Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Calcium Bind Proteins ; 1(2): 108-114, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-22162668

RESUMEN

Centrin is a conserved calcium binding protein belonging to the EF-hand superfamily with two independent structural domains. This protein is found to be phosphorylated near the carboxyl terminal end. Our goal was to perform a novel comparative study of phosphorylated and unphosphorylated centrin by Fourier transform infrared (FT-IR) spectroscopy, two-dimensional correlation spectroscopy (2D-COS) analysis and differential scanning calorimetry (DSC). To achieve this goal, we have bacterially expressed, isolated, purified and phosphorylated centrin. We verified the extent of phosphorylation to be >97% for centrin by MALDI MS analysis and determined the absence of aggregated protein. The thermal denaturation temperature and ΔCp were determined to be T(m) = 112.1 °C (ΔCp = 7.8 Kcal/mole/ΔC) and T(m) = 111.0°C (ΔCp = 5.0 Kcal/mole/°C) for holo-centrin and phosphorylated centrin, respectively. We have also described the molecular dynamics leading up to the thermal denaturation of the protein: for holo-centrin the vibrational modes associated with the calcium binding sites aspartates and glutamates, loops then the arginines, followed by the structured backbone vibrational modes the α-helix at 1635 cm(-1) then ß-sheet and finally the more exposed α-helix at 1650 cm(-1); while for phosphorylated centrin aspartate, glutamate and arginine, followed by the backbone associated vibrational modes α-helix (1650 cm(-1)), loop then the ß-sheet (1633 cm(-1)) and finally the α-helix (1637 cm(-1)). Therefore, the effect on domain stability due to phosphorylation at Ser(167) was observed in the loops as well as the α-helix at 1650 cm(-1).

2.
Biochem Biophys Res Commun ; 342(1): 342-8, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16480960

RESUMEN

Centrin is an EF-hand calcium-binding protein found in microtubule organizing centers of organisms ranging from algae and yeast to man. Phosphorylation in the centrin C-terminal domain occurs in mitosis and is associated with alterations in contractile fibers. To obtain insight into the structural basis for the functional effect of phosphorylation, Chlamydomonas reinhardtii centrin C-terminal domain phosphorylated at Ser167 (pCRC-C) has been produced and characterized. The structure of pCRC-C was compared to the unmodified protein by NMR spectroscopy. The effect of phosphorylation on target binding was examined for the complex of pCRC-C and a 19 residue centrin-binding fragment of Kar1. Remarkably, the efficient and selective phosphorylation by PKA was suppressed in the complex. Moreover, comparisons of NMR chemical shift differences induced by phosphorylation reveal a greater effect from phosphorylation in the context of the Kar1 complex than for the free protein. These results directly demonstrate that phosphorylation modulates the structure and biochemical activities of centrin.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Fosfoserina/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Chlamydomonas reinhardtii/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA