Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microb Ecol ; 86(3): 1725-1739, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37039841

RESUMEN

Desiccation tolerance (DT) is relatively frequent in non-vascular plants and green algae. However, it is poorly understood how successive dehydration/rehydration (D/R) cycles shape their transcriptomes and proteomes. Here, we report a comprehensive analysis of adjustments on both transcript and protein profiles in response to successive D/R cycles in Coccomyxa simplex (Csol), isolated from the lichen Solorina saccata. A total of 1833 transcripts and 2332 proteins were differentially abundant as a consequence of D/R; however, only 315 of these transcripts/proteins showed similar trends. Variations in both transcriptomes and proteomes along D/R cycles together with functional analyses revealed an extensive decrease in transcript and protein levels during dehydration, most of them involved in gene expression, metabolism, substance transport, signalling and folding catalysis, among other cellular functions. At the same time, a series of protective transcripts/proteins, such as those related to antioxidant defence, polyol metabolism and autophagy, was upregulated during dehydration. Overall, our results show a transient decrease in most cellular functions as a result of drying and a gradual reactivation of specific cell processes to accommodate the hydration status along successive D/R cycles. This study provides new insights into key mechanisms involved in the DT of Csol and probably other dehydration-tolerant microalgae. In addition, functionally characterising the high number of genes/proteins of unknown functions found in this study may lead to the discovery of new DT mechanisms.


Asunto(s)
Líquenes , Transcriptoma , Deshidratación , Líquenes/fisiología , Proteoma/metabolismo , Proteómica , Desecación
2.
Plant Cell Environ ; 45(12): 3611-3630, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36207810

RESUMEN

Strigolactones are phytohormones with many attributed roles in development, and more recently in responses to environmental stress. We will review evidence of the latter in the frame of the classic distinction among the three main stress acclimation strategies (i.e., avoidance, tolerance and escape), by taking osmotic stress in its several facets as a non-exclusive case study. The picture we will sketch is that of a hormonal family playing important roles in each of the mechanisms tested so far, and influencing as well the build-up of environmental memory through priming. Thus, strigolactones appear to be backstage operators rather than frontstage players, setting the tune of acclimation responses by fitting them to the plant individual history of stress experience.


Asunto(s)
Plantas , Estrés Fisiológico , Lactonas , Aclimatación
3.
Microb Ecol ; 81(2): 437-453, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32989484

RESUMEN

Trebouxia sp. (TR9) and Coccomyxa simplex (Csol) are desiccation-tolerant lichen microalgae with different adaptive strategies in accordance with the prevailing conditions of their habitats. The remodelling of cell wall and extracellular polysaccharides depending on water availability are key elements in the tolerance to desiccation of both microalgae. Currently, there is no information about the extracellular proteins of these algae and other aero-terrestrial microalgae in response to limited water availability. To our knowledge, this is the first report on the proteins associated with the extracellular polymeric substances (EPS) of aero-terrestrial microalgae subjected to cyclic desiccation/rehydration. LC-MS/MS and bioinformatic analyses of the EPS-associated proteins in the two lichen microalgae submitted to four desiccation/rehydration cycles allowed the compilation of 111 and 121 identified proteins for TR9 and Csol, respectively. Both sets of EPS-associated proteins shared a variety of predicted biological functions but showed a constitutive expression in Csol and partially inducible in TR9. In both algae, the EPS-associated proteins included a number of proteins of unknown functions, some of which could be considered as small intrinsically disordered proteins related with desiccation-tolerant organisms. Differences in the composition and the expression pattern between the studied EPS-associated proteins would be oriented to preserve the biochemical and biophysical properties of the extracellular structures under the different conditions of water availability in which each alga thrives.


Asunto(s)
Aclimatación , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Microalgas/fisiología , Proteoma/metabolismo , Proteínas Algáceas/metabolismo , Pared Celular/metabolismo , Chlorophyta/clasificación , Chlorophyta/metabolismo , Chlorophyta/fisiología , Desecación , Líquenes/clasificación , Líquenes/metabolismo , Líquenes/fisiología , Microalgas/clasificación , Microalgas/metabolismo , Proteínas de Plantas/metabolismo , Especificidad de la Especie , Agua/metabolismo
4.
Environ Microbiol ; 22(8): 3096-3111, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32337764

RESUMEN

Trebouxia sp. TR9 and Coccomyxa simplex are desiccation-tolerant microalgae with flexible cell walls, which undergo species-specific remodelling during dehydration-rehydration (D/R) due to their distinct ultrastructure and biochemical composition. Here, we tested the hypothesis that extracellular polysaccharides excreted by each microalga could be quantitatively and/or qualitatively modified by D/R. Extracellular polysaccharides were analysed by size exclusion and anion exchange chromatography, specific stains after gel electrophoresis and gas chromatography/mass spectrometry of trimethylsilyl derivatives (to determine their monosaccharide composition). The structure of a TR9-sulfated polymer was deduced from nuclear magnetic resonance (NMR) analyses. In addition, sugar-sulfotransferase encoding genes were identified in both microalgae, and their expression was measured by RT-qPCR. D/R did not alter the polydispersed profile of extracellular polysaccharides in either microalga but did induce quantitative changes in several peaks. Furthermore, medium-low-sized uronic acid-containing polysaccharides were almost completely substituted by higher molecular mass carbohydrates after D/R. Sulfated polysaccharide(s) were detected, for the first time, in the extracellular polymeric substances of both microalgae, but only increased significantly in TR9 after cyclic D/R, which induced a sugar-sulfotransferase gene and accumulated sulfated ß-D-galactofuranan(s). Biochemical remodelling of extracellular polysaccharides in aeroterrestrial desiccation-tolerant microalgae is species-specific and seems to play a role in the response to changes in environmental water availability.


Asunto(s)
Chlorophyta/fisiología , Desecación , Microalgas/fisiología , Polisacáridos/metabolismo , Estrés Fisiológico/fisiología , Pared Celular/fisiología , Chlorophyta/genética , Deshidratación , Líquenes , Sulfatos/química , Sulfotransferasas/genética
5.
Ann Bot ; 125(3): 459-469, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-31679006

RESUMEN

BACKGROUND AND AIMS: One of the most distinctive features of desiccation-tolerant plants is their high cell wall (CW) flexibility. Most lichen microalgae can tolerate drastic dehydration-rehydration (D/R) conditions; however, their mechanisms of D/R tolerance are scarcely understood. We tested the hypothesis that D/R-tolerant microalgae would have flexible CWs due to species-specific CW ultrastructure and biochemical composition, which could be remodelled by exposure to cyclic D/R. METHODS: Two lichen microalgae, Trebouxia sp. TR9 (TR9, adapted to rapid D/R cycles) and Coccomyxa simplex (Csol, adapted to seasonal dry periods) were exposed to no or four cycles of desiccation [25-30 % RH (TR9) or 55-60 % RH (Csol)] and 16 h of rehydration (100 % RH). Low-temperature SEM, environmental SEM and freeze-substitution TEM were employed to visualize structural alterations induced by D/R. In addition, CWs were extracted and sequentially fractionated with hot water and KOH, and the gel permeation profile of polysaccharides was analysed in each fraction. The glycosyl composition and linkage of the main polysaccharides of each CW fraction were analysed by GC-MS. KEY RESULTS: All ultrastructural analyses consistently showed that desiccation caused progressive cell shrinkage and deformation in both microalgae, which could be rapidly reversed when water availability increased. Notably, the plasma membrane of TR9 and Csol remained in close contact with the deformed CW. Exposure to D/R strongly altered the size distribution of TR9 hot-water-soluble polysaccharides, composed mainly of a ß-3-linked rhamnogalactofuranan and Csol KOH-soluble ß-glucans. CONCLUSIONS: Cyclic D/R induces biochemical remodelling of the CW that could increase CW flexibility, allowing regulated shrinkage and expansion of D/R-tolerant microalgae.


Asunto(s)
Líquenes , Microalgas , Pared Celular , Desecación , Fluidoterapia
6.
J Phycol ; 56(1): 170-184, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578712

RESUMEN

The Trebouxiophyceae is the class of Chlorophyta algae from which the highest number of chloroplast genome (cpDNA) sequences has been obtained. Several species in this class participate in symbioses with fungi to form lichens. However, no cpDNA has been obtained from any Trebouxia lichen-symbiont microalgae, which are present in approximately half of all lichens. Here, we report the sequence of the completely assembled cpDNA from Trebouxia sp. TR9 and a comparative study with other Trebouxio-phyceae. The organization of the chloroplast genome of Trebouxia sp. TR9 has certain features that are unusual in the Trebouxiophyceae and other green algae. The most remarkable characteristics are the presence of long intergenic spacers, a quadripartite structure with short inverted repeated sequences (IRs), and the loss of the rps4 gene. The presence of long intergenic spacers accounts for a larger cpDNA size in comparison to other closely related Trebouxiophyceae. The IRs, which were thought to be lost in the Trebouxiales, are distinct from most of cpDNAs since they lack the rRNA operon and uniquely includes the rbcL gene. The functional transfer of the rps4 gene to the nuclear genome has been confirmed by sequencing and examination of the gene architecture, which includes three spliceosomal introns as well as the verification of the presence of the corresponding transcript. This is the first documented transfer of the rps4 gene from the chloroplast to the nucleus among Viridiplantae. Additionally, a fairly well-resolved phylogenetic reconstruction, including Trebouxia sp. TR9 along with other Trebouxiophyceae, was obtained based on a set of conserved chloroplast genes.


Asunto(s)
Chlorophyta/genética , Genoma del Cloroplasto , Líquenes/genética , Microalgas , Mapeo Cromosómico , Filogenia
7.
Plant Cell Physiol ; 60(8): 1880-1891, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31127294

RESUMEN

Oxidative stress is a crucial challenge for lichens exposed to cyclic desiccation and rehydration (D/R). However, strategies to overcome this potential stress are still being unraveled. Therefore, the physiological performance and antioxidant mechanisms of two lichen microalgae, Trebouxia sp. (TR9) and Coccomyxa simplex (Csol), were analyzed. TR9 was isolated from Ramalina farinacea, a Mediterranean fruticose epiphytic lichen adapted to xeric habitats, while Csol is the phycobiont of Solorina saccata, a foliaceous lichen that grows on humid rock crevices. The tolerance to desiccation of both species was tested by subjecting them to different drying conditions and to four consecutive daily cycles of D/R. Our results show that a relative humidity close to that of their habitats was crucial to maintain the photosynthetic rates. Concerning antioxidant enzymes, in general, manganese superoxide dismutases (MnSODs) were induced after desiccation and decreased after rehydration. In TR9, catalase (CAT)-A increased, and its activity was maintained after four cycles of D/R. Ascorbate peroxidase activity was detected only in Csol, while glutathione reductase increased only in TR9. Transcript levels of antioxidant enzymes indicate that most isoforms of MnSOD and FeSOD were induced by desiccation and repressed after rehydration. CAT2 gene expression was also upregulated and maintained at higher levels even after four cycles of D/R in accordance with enzymatic activities. To our knowledge, this is the first study to include the complete set of the main antioxidant enzymes in desiccation-tolerant microalgae. The results highlight the species-specific induction of the antioxidant system during cyclic D/R, suggesting a priming of oxidative defence metabolism.


Asunto(s)
Antioxidantes/metabolismo , Líquenes/metabolismo , Microalgas/metabolismo , Desecación , Estrés Oxidativo/fisiología , Superóxido Dismutasa/metabolismo
8.
J Phycol ; 54(1): 66-78, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29057470

RESUMEN

The history of group I introns is characterized by repeated horizontal transfers, even among phylogenetically distant species. The symbiogenetic thalli of lichens are good candidates for the horizontal transfer of genetic material among distantly related organisms, such as fungi and green algae. The main goal of this study was to determine whether there were different trends in intron distribution and properties among Chlorophyte algae based on their phylogenetic relationships and living conditions. Therefore, we investigated the occurrence, distribution and properties of group I introns within the chloroplast LSU rDNA in 87 Chlorophyte algae including lichen and free-living Trebouxiophyceae compared to free-living non-Trebouxiophyceae species. Overall, our findings showed that there was high diversity of group I introns and homing endonucleases (HEs) between Trebouxiophyceae and non-Trebouxiophyceae Chlorophyte algae, with divergence in their distribution patterns, frequencies and properties. However, the differences between lichen Trebouxiophyceae and free-living Trebouxiophyceae were smaller. An exception was the cL2449 intron, which was closely related to ω elements in yeasts. Such introns seem to occur more frequently in lichen Trebouxiophyceae compared to free-living Trebouxiophyceae. Our data suggest that lichenization and maintenance of lichen symbiosis for millions of years of evolution may have facilitated horizontal transfers of specific introns/HEs between symbionts. The data also suggest that sequencing of more chloroplast genes harboring group I introns in diverse algal groups may help us to understand the group I intron/HE transmission process within these organisms.


Asunto(s)
Chlorophyta/genética , Cloroplastos/genética , Intrones , Líquenes/genética , ADN de Algas/análisis , ADN Ribosómico/análisis , Filogenia , ARN Ribosómico 23S/análisis , Análisis de Secuencia de ADN
9.
Environ Microbiol ; 18(5): 1546-60, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26914009

RESUMEN

Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats.


Asunto(s)
Chlorophyta/fisiología , Líquenes/clasificación , Microalgas/fisiología , Agua/metabolismo , Ascomicetos/fisiología , Pared Celular/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Estrés Fisiológico , Simbiosis
10.
Mol Phylogenet Evol ; 94(Pt B): 765-777, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26516030

RESUMEN

The precise boundary delineations between taxa in symbiotic associations are very important for evolutionary and ecophysiological studies. Growing evidence indicates that in many cases, the use of either morphological characters or molecular markers results in diversity underestimation. In lichen symbioses, Trebouxia is the most common genus of lichen phycobionts, however, the diversity within this genus has been poorly studied and as such there is no clear species concept. This study constitutes a multifaceted approach incorporating aspects of ultrastructural characterization by TEM and phylogenomics to evaluate the morphological and genetic diversity of phycobionts within the sexually reproducing lichen Ramalina fraxinea in the context of Mediterranean and temperate populations. Results reveal an association with at least seven different Trebouxia lineages belonging to at least two species, T. decolorans and T. jamesii, and diverse combinations of such lineages coexisting within the same thallus depending on the analyzed sample. Some of these lineages are shared by several other non-related lichen taxa. Our findings indicate the existence of a highly diverse assemblage of Trebouxia algae associating with R. fraxinea and suggest a possible incipient speciation within T. decolorans rendering a number of lineages or even actual species. This study stresses the importance of coordinated ultrastructural and molecular analyses to improve estimates of diversity and reveal the coexistence of more than one Trebouxia species within the same thallus. It is also necessary to have clearer species delimitation criteria within the genus Trebouxia and microalgae in general.


Asunto(s)
Ascomicetos/clasificación , Chlorophyta/clasificación , Líquenes/clasificación , Ascomicetos/genética , Ascomicetos/ultraestructura , Evolución Biológica , Chlorophyta/genética , Chlorophyta/ultraestructura , Variación Genética , Líquenes/genética , Líquenes/ultraestructura , Microalgas/clasificación , Microalgas/genética , Filogenia , Simbiosis
11.
Nanotechnology ; 25(35): 355501, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25116197

RESUMEN

Elastomeric composites based on nanotube liquid crystals (LCs) that preserve the internal orientation of nanotubes could lead to anisotropic physical properties and flexible energy conversion. Using a simple vacuum filtration technique of fabricating nanotube LC films and utilizing a transfer process to poly (dimethyl) siloxane wherein the LC arrangement is preserved, here we demonstrate unique and reversible photomechanical response of this layered composite to excitation by near infra-red (NIR) light at ultra-low nanotube mass fractions. On excitation by NIR photons, with application of small or large pre-strains, significant expansion or contraction of the sample occurs, respectively, that is continuously reversible and three orders of magnitude larger than in pristine polymer. Schlieren textures were noted in these LC composites confirming long range macroscopic nematic order of nanotubes within the composites. Order parameters of LC films ranged from S(optical) = 0.51-0.58 from dichroic measurements. Film concentrations, elastic modulus and photomechanical stress were all seen to be related to the nematic order parameter. For the same nanotube concentration, the photomechanical stress was almost three times larger for the self-assembled LC nanotube actuator compared to actuator based on randomly oriented carbon nanotubes. Investigation into the kinetics of photomechanical actuation showed variation in stretching exponent ß with pre-strains, concentration and orientation of nanotubes. Maximum photomechanical stress of ∼ 0.5 MPa W(-1) and energy conversion of ∼ 0.0045% was achieved for these layered composites. The combination of properties, namely, optical anisotropy, reversible mechanical response to NIR excitation and flexible energy conversion all in one system accompanied with low cost makes nanotube LC elastomers important for soft photochromic actuation, energy conversion and photo-origami applications.

12.
Microorganisms ; 12(2)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38399777

RESUMEN

The rise of drug resistance to antivirals poses a significant global concern for public health; therefore, there is a pressing need to identify novel compounds that can effectively counteract strains resistant to current antiviral treatments. In light of this, researchers have been exploring new approaches, including the investigation of natural compounds as alternative sources for developing potent antiviral therapies. Thus, this work aimed to evaluate the antiviral properties of the organic-soluble fraction of a root exudate derived from the tomato plant Solanum lycopersicum in the context of herpesvirus infections. Our findings demonstrated that a root exudate from Solanum lycopersicum exhibits remarkable efficacy against prominent members of the family Herpesviridae, specifically herpes simplex virus type 1 (HSV-1) (EC50 25.57 µg/mL, SI > 15.64) and human cytomegalovirus (HCMV) (EC50 9.17 µg/mL, SI 32.28) by inhibiting a molecular event during the herpesvirus replication phase. Moreover, the phytochemical fingerprint of the Solanum lycopersicum root exudate was characterized through mass spectrometry. Overall, these data have unveiled a novel natural product with antiherpetic activity, presenting a promising and valuable alternative to existing drugs.

13.
Mol Phylogenet Evol ; 66(3): 857-67, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23201395

RESUMEN

The RPL10A gene encodes the RPL10 protein, required for joining 40S and 60S subunits into a functional 80S ribosome. This highly conserved gene, ubiquitous across all eukaryotic super-groups, is characterized by a variable number of spliceosomal introns, present in most organisms. These properties facilitate the recognition of orthologs among distant taxa and thus comparative studies of sequences as well as the distribution and properties of introns in taxonomically distant groups of eukaryotes. The present study examined the multiple ways in which RPL10A conservation vs. sequence changes in the gene over the course of evolution, including in exons, introns, and the encoded proteins, can be exploited for evolutionary analysis at different taxonomic levels. At least 25 different positions harboring introns within the RPL10A gene were determined in different taxa, including animals, plants, fungi, and alveolates. Generally, intron positions were found to be well conserved even across different kingdoms. However, certain introns seemed to be restricted to specific groups of organisms. Analyses of several properties of introns, including insertion site, phase, and length, along with exon and intron GC content and exon-intron boundaries, suggested biases within different groups of organisms. The use of a standard primer pair to analyze a portion of the intron-containing RPL10A gene in 12 genera of green algae within Chlorophyta is presented as a case study for evolutionary analyses of introns at intermediate and low taxonomic levels. Our study shows that phylogenetic reconstructions at different depths can be achieved using RPL10A nucleotide sequences from both exons and introns as well as the amino acid sequences of the encoded protein.


Asunto(s)
Chlorophyta/genética , Eucariontes/genética , Evolución Molecular , Exones/genética , Variación Genética , Intrones/genética , Proteínas Ribosómicas/genética , Composición de Base/genética , Secuencia de Bases , Teorema de Bayes , Chlorophyta/clasificación , Secuencia Conservada/genética , Cartilla de ADN/genética , Eucariontes/clasificación , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Proteína Ribosómica L10 , Alineación de Secuencia , Análisis de Secuencia de ADN
14.
Langmuir ; 29(51): 15822-30, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24308286

RESUMEN

This work describes the near conduction band edge structure of electrospun mats of multiwalled carbon nanotube (MWCNT)-polydimethylsiloxane-poly(methyl methacrylate) by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra, which may evidence phase separation within the bulk of the micrometer-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C═O, and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown MWCNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation.


Asunto(s)
Dimetilpolisiloxanos/química , Nanotubos de Carbono/química , Polimetil Metacrilato/química , Espectroscopía de Absorción de Rayos X , Conformación Molecular , Fotones
15.
ACS Omega ; 7(16): 13398-13402, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35505822

RESUMEN

Research organizations are critically in need of directed growth toward future interoperability and federation. The purpose of this Viewpoint is to alert the government, academia, professional societies, foundations, and industries of a further need for consideration of data in chemistry and materials as a long-term and sustained development in the US. This paper is a call for coordinated action from the government, academia, and industry to establish a national strategy and concomitant infrastructure focused on research data.

16.
Front Plant Sci ; 13: 940003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105709

RESUMEN

Chicory taproots accumulate sesquiterpene lactones lactucin, lactucopicrin, and 8-deoxylactucin, predominantly in their oxalated forms. The biosynthetic pathway for chicory sesquiterpene lactones has only partly been elucidated; the enzymes that convert farnesyl pyrophosphate to costunolide have been described. The next biosynthetic step of the conversion of costunolide to the tricyclic structure, guaianolide kauniolide, has so far not been elucidated in chicory. In this work three putative kauniolide synthase genes were identified in chicory named CiKLS1, CiKLS2, and CiKLS3. Their activity to convert costunolide to kauniolide was demonstrated in vitro using yeast microsome assays. Next, introduction of CRISPR/Cas9 reagents into chicory protoplasts was used to inactivate multiple chicory KLS genes and several chicory lines were successfully regenerated. The inactivation of the kauniolide synthase genes in chicory by the CRISPR/Cas9 approach resulted in interruption of the sesquiterpene lactone biosynthesis in chicory leaves and taproots. In chicory taproots, but not in leaves, accumulation of costunolide and its conjugates was observed to high levels, namely 1.5 mg/g FW. These results confirmed that all three genes contribute to STL accumulation, albeit to different extent. These observations demonstrate that three genes oriented in tandem on the chicory genome encode kauniolide synthases that initiate the conversion of costunolide toward the sesquiterpene lactones in chicory.

17.
Environ Microbiol ; 13(3): 806-18, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21134099

RESUMEN

Ramalina farinacea is an epiphytic fruticose lichen that is relatively abundant in areas with Mediterranean, subtropical or temperate climates. Little is known about photobiont diversity in different lichen populations. The present study examines the phycobiont composition of several geographically distant populations of R. farinacea from the Iberian Peninsula, Canary Islands and California as well as the physiological performance of isolated phycobionts. Based on anatomical observations and molecular analyses, the coexistence of two different taxa of Trebouxia (working names, TR1 and TR9) was determined within each thallus of R. farinacea in all of the analysed populations. Examination of the effects of temperature and light on growth and photosynthesis indicated a superior performance of TR9 under relatively high temperatures and irradiances while TR1 thrived at moderate temperature and irradiance. Ramalina farinacea thalli apparently represent a specific and selective form of symbiotic association involving the same two Trebouxia phycobionts. Strict preservation of this pattern of algal coexistence is likely favoured by the different and probably complementary ecophysiological responses of each phycobiont, thus facilitating the proliferation of this lichen in a wide range of habitats and geographic areas.


Asunto(s)
Ascomicetos/fisiología , Chlorophyta/fisiología , Líquenes/fisiología , Simbiosis , California , Chlorophyta/citología , Chlorophyta/ultraestructura , Luz , Fotosíntesis , España
18.
Ann Bot ; 107(1): 109-18, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21051454

RESUMEN

BACKGROUND AND AIMS: Most lichens form associations with Trebouxia phycobionts and some of them simultaneously include genetically different algal lineages. In other symbiotic systems involving algae (e.g. reef corals), the relative abundances of different endosymbiotic algal clades may change over time. This process seems to provide a mechanism allowing the organism to respond to environmental stress. A similar mechanism may operate in lichens with more than one algal lineage, likewise protecting them against environmental stresses. Here, the physiological responses to oxidative stress of two distinct Trebouxia phycobionts (provisionally named TR1 and TR9) that coexist within the lichen Ramalina farinacea were analysed. METHODS: Isolated phycobionts were exposed to oxidative stress through the reactive oxygen species propagator cumene hydroperoxide (CuHP). Photosynthetic pigments and proteins, photosynthesis (through modulated chlorophyll fluorescence), the antioxidant enzymes superoxide dismutase (SOD) and glutathione reductase (GR), and the stress-related protein HSP70 were analysed. KEY RESULTS: Photosynthetic performance was severely impaired by CuHP in phycobionts, as indicated by decreases in the maximal PSII photochemical efficiency (F(v)/F(m)), the quantum efficiency of PSII (Φ(PSII)) and the non-photochemical dissipation of energy (NPQ). However, the CuHP-dependent decay in photosynthesis was significantly more severe in TR1, which also showed a lower NPQ and a reduced ability to preserve chlorophyll a, carotenoids and D1 protein. Additionally, differences were observed in the capacities of the two phycobionts to modulate antioxidant activities and HPS70 levels when exposed to oxidative stress. In TR1, CuHP significantly diminished HSP70 and GR but did not change SOD activities. In contrast, in TR9 the levels of both antioxidant enzymes and those of HSP70 increased in response to CuHP. CONCLUSIONS: The better physiological performance of TR9 under oxidative conditions may reflect its greater capacity to undertake key metabolic adjustments, including increased non-photochemical quenching, higher antioxidant protection and the induction of repair mechanisms.


Asunto(s)
Chlorophyta/fisiología , Genes de Plantas , Líquenes/fisiología , Derivados del Benceno/metabolismo , Chlorophyta/genética , Variación Genética , Glutatión Reductasa/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Líquenes/genética , Estrés Oxidativo , Fotosíntesis , Superóxido Dismutasa/metabolismo
19.
Plants (Basel) ; 10(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33923980

RESUMEN

Lichens are symbiotic associations (holobionts) established between fungi (mycobionts) and certain groups of cyanobacteria or unicellular green algae (photobionts). This symbiotic association has been essential in the colonization of terrestrial dry habitats. Lichens possess key mechanisms involved in desiccation tolerance (DT) that are constitutively present such as high amounts of polyols, LEA proteins, HSPs, a powerful antioxidant system, thylakoidal oligogalactolipids, etc. This strategy allows them to be always ready to survive drastic changes in their water content. However, several studies indicate that at least some protective mechanisms require a minimal time to be induced, such as the induction of the antioxidant system, the activation of non-photochemical quenching including the de-epoxidation of violaxanthin to zeaxanthin, lipid membrane remodeling, changes in the proportions of polyols, ultrastructural changes, marked polysaccharide remodeling of the cell wall, etc. Although DT in lichens is achieved mainly through constitutive mechanisms, the induction of protection mechanisms might allow them to face desiccation stress in a better condition. The proportion and relevance of constitutive and inducible DT mechanisms seem to be related to the ecology at which lichens are adapted to.

20.
Biomed Microdevices ; 12(2): 311-6, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20054654

RESUMEN

Cell handling is currently hindered by rudimentary-manufactured manipulators. Restrictive designs of glass pipettes and other micromanipulators limit functionality and often damage cells, ultimately resulting in lysis. We present a novel technique to design and mill conventional glass pipettes at specifically chosen angles and geometries. Focus ion beam milling by Ga+ ions yields extremely polished edges. Results from mouse embryo piercing correlate increased penetration rates with decreased pipette angle. Milled pipettes maintain structural integrity after repeated piercing. For the first time, the effects of unintentionally implanted Ga+ on embryo development are addressed. Optimum embryo development up to blastocyst stage after manipulation reveal little impact of residual implanted Ga+, suggesting biocompatibility and paving the way to introducing ion milling techniques in the biomedical device arena. The milling technique can be adequately tailored to specific applications and allows for mass production, presenting a promising avenue for future, increasingly demanding, cell handling.


Asunto(s)
Células/citología , Estructuras Celulares/citología , Vidrio/química , Iones/química , Microinyecciones/métodos , Animales , Blastocisto/citología , Ratones , Fenómenos Físicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA