Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895040

RESUMEN

Grapevine development and ripening are complex processes that involve several biochemical pathways, including fatty acid and lipid metabolism. Fatty acids are essential components of lipids, which play crucial roles in fruit maturation and flavor development. However, the dynamics of fatty acid metabolism in grape flowers and berries are poorly understood. In this study, we present those dynamics and investigate the mechanisms of fatty acid homeostasis on 'Thompson Seedless' berries using metabolomic and proteomic analyses. Low-polar metabolite profiling indicated a higher abundance of fatty acids at the pre-flowering and pre-veraison stages. Proteomic analyses revealed that grape flowers and berries display unique profiles of proteins involved in fatty acid biosynthesis, triacylglycerol assembly, fatty acid ß-oxidation, and lipid signaling. These findings show, for the first time, that fatty acid metabolism also plays an important role in the development of non-oil-rich tissues, opening new perspectives about lipid function and its relation to berry quality.


Asunto(s)
Vitis , Vitis/metabolismo , Frutas/metabolismo , Proteómica , Metabolismo de los Lípidos , Ácidos Grasos/metabolismo , Lípidos , Regulación de la Expresión Génica de las Plantas
2.
BMC Genomics ; 20(1): 108, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30727956

RESUMEN

BACKGROUND: Avocado (Persea americana Mill.) is a basal angiosperm from the Lauraceae family. This species has a diploid genome with an approximated size of ~ 920 Mbp and produces a climacteric, fleshy and oily fruit. The flowering and fruit set are particularly prolonged processes, lasting between one to three months, generating important differences in physiological ages of the fruit within the same tree. So far there is no detailed genomic information regarding this species, being the cultivar 'Hass' especially important for avocado growers worldwide. With the aim to explore the fruit avocado transcriptome and to identify candidate biomarkers to monitore fruit development, we carried out an RNA-Seq approach during 4 stages of 'Hass' fruit development: 150 days after fruit set (DAFS), 240 DAFS, 300 DAFS (harvest) and 390 DAFS (late-harvest). RESULTS: The 'Hass' de novo transcriptome contains 62,203 contigs (x̅=988 bp, N50 = 1050 bp). We found approximately an 85 and 99% of complete ultra-conserved genes in eukaryote and plantae database using BUSCO (Benchmarking Universal Single-Copy Orthologs) and CEGMA (Core Eukaryotic Gene Mapping Approach), respectively. Annotation was performed with BLASTx, resulting in a 58% of annotated contigs (90% of differentially expressed genes were annotated). Differentially expressed genes analysis (DEG; with False Discovery Rate ≤ 0.01) found 8672 genes considering all developmental stages. From this analysis, genes were clustered according to their expression pattern and 1209 genes show correlation with the four developmental stages. CONCLUSIONS: Candidate genes are proposed as possible biomarkers for monitoring the development of the 'Hass' avocado fruit associated with lipid metabolism, ethylene signaling pathway, auxin signaling pathway, and components of the cell wall.


Asunto(s)
Frutas/crecimiento & desarrollo , Persea/genética , Proteínas de Plantas/genética , Transcriptoma , Frutas/metabolismo , Persea/crecimiento & desarrollo , Persea/metabolismo , Análisis de Secuencia de ARN
3.
Physiol Plant ; 166(3): 772-793, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30203620

RESUMEN

Chilling injury represents a major constrain for crops productivity. Prunus persica, one of the most relevant rosacea crops, have early season varieties that are resistant to chilling injury, in contrast to late season varieties, which display chilling symptoms such as mealiness (dry, sandy fruit mesocarp) after prolonged storage at chilling temperatures. To uncover the molecular processes related to the ability of early varieties to withstand mealiness, postharvest and genome-wide RNA-seq assessments were performed in two early and two late varieties. Differences in juice content and ethylene biosynthesis were detected among early and late season fruits that became mealy after exposed to prolonged chilling. Principal component and data distribution analysis revealed that cold-stored late variety fruit displayed an exacerbated and unique transcriptome profile when compared to any other postharvest condition. A differential expression analysis performed using an empirical Bayes mixture modeling approach followed by co-expression and functional enrichment analysis uncover processes related to ethylene, lipids, cell wall, carotenoids and DNA metabolism, light response, and plastid homeostasis associated to the susceptibility or resistance of P. persica varieties to chilling stress. Several of the genes related to these processes are in quantitative trait loci (QTL) associated to mealiness in P. persica. Together, these analyses exemplify how P. persica can be used as a model for studying chilling stress in plants.


Asunto(s)
Prunus persica/genética , ARN/genética , Transcriptoma/genética , Teorema de Bayes , Frío , Etilenos/metabolismo , Frutas/genética , Sitios de Carácter Cuantitativo/genética
4.
Phytopathology ; 108(5): 552-560, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29240520

RESUMEN

Kiwifruit bleeding sap samples, collected in Italian and Chilean orchards from symptomatic and asymptomatic plants, were evaluated for the presence of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker. The saps were sampled during the spring in both hemispheres, before the bud sprouting, during the optimal time window for the collection of an adequate volume of sample for the early detection of the pathogen, preliminarily by molecular assays, and then through its direct isolation and identification. The results of molecular analyses showed more effectiveness in the P. syringae pv. actinidiae detection when compared with those of microbiological analyses through the pathogen isolation on the nutritive and semiselective media selected. The bleeding sap analyses allowed the isolation and identification of two hypersensitive response (HR) negative and hypovirulent P. syringae pv. actinidiae strains from different regions in Italy. Moreover, multilocus sequence analysis (MLSA) and whole genome sequence (WGS) were carried out on selected Italian and Chilean P. syringae pv. actinidiae virulent strains to verify the presence of genetic variability compared with the HR negative strains and to compare the variability of selected gene clusters between strains isolated in both countries. All the strains showed the lack of argK and coronatine gene clusters as reported for the biovar 3 P. syringae pv. actinidiae strains. Despite the biologic differences obtained in the tobacco bioassays and in pathogenicity assays, the MLSA and WGS analyses did not show significant differences between the WGS of the HR negative and HR positive strains; the difference, on the other hand, between PAC_ICE sequences of Italian and Chilean P. syringae pv. actinidiae strains was confirmed. The inability of the hypovirulent strains IPV-BO 8893 and IPV-BO 9286 to provoke HR in tobacco and the low virulence shown in this host could not be associated with mutations or recombinations in T3SS island.


Asunto(s)
Actinidia/microbiología , Genoma Bacteriano , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/genética , Técnicas de Tipificación Bacteriana , Chile , Italia , Tipificación de Secuencias Multilocus , Pseudomonas syringae/clasificación , Secuenciación Completa del Genoma
5.
World J Microbiol Biotechnol ; 32(5): 74, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27038944

RESUMEN

Botrytis cinerea attacks a broad range of host causing significant economic losses in the worldwide fruit export industry. Hitherto, many studies have focused on the penetration mechanisms used by this phytopathogen, but little is known about the early stages of infection, especially those such as adhesion and germination. The aim of this work was to evaluate the effect of cuticular waxes compounds from table grapes on growth, germination and gene expression of B. cinerea. To accomplish this, growth was analyzed using as substrate n-alkanes extracted from waxes of fresh fruit (table grapes, blueberries and apricots). Subsequently, the main compounds of table grape waxes, oleanolic acid (OA) and n-fatty alcohols, were mixed to generate a matrix on which conidia of B. cinerea were added to assess their effect on germination and expression of bctub, bchtr and bchex genes. B. cinerea B05.10, isolated from grapes, increased its growth on a matrix composed by table grapes n-alkanes in comparison to a matrix made with n-alkanes from apricot or blueberries. Moreover, at 2.5 h, B05.10 germination increased 17 and 33 % in presence of n-alkanes from table grape, in comparison to conditions without alkanes or with blueberries alkanes, respectively. Finally, expression of bchtr and bchex showed a significant increase during the first hour after contact with n-fatty alcohols and OA. In conclusion, B. cinerea displays selectivity towards certain compounds found in host waxes, mainly n-fatty alcohols, which could be a good candidate to control this phytopathogen in early stages of infection.


Asunto(s)
Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Proteínas Fúngicas/genética , Enfermedades de las Plantas/microbiología , Extractos Vegetales/farmacología , Esporas Fúngicas/crecimiento & desarrollo , Vitis/química , Ceras/farmacología , Botrytis/genética , Proteínas Fúngicas/metabolismo , Extractos Vegetales/química , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Ceras/química
6.
Molecules ; 20(3): 3667-80, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25711424

RESUMEN

Postharvest softening of grape berries is one of the main problems affecting grape quality during export. Cell wall disassembly, especially of pectin polysaccharides, has been commonly related to fruit softening, but its influence has been poorly studied in grapes during postharvest life. In order to better understand this process, the Thompson seedless (TS) variety, which has significantly decreased berry texture after prolonged cold storage, was compared to NN107, a new table grape variety with higher berry firmness. Biochemical analysis revealed a greater amount of calcium in the cell wall of the NN107 variety and less reduction of uronic acids than TS during cold storage. In addition, the activity of polygalacturonase was higher in TS than NN107 berries; meanwhile pectin methylesterase activity was similar in both varieties. Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) suggests a differential pectin metabolism during prolonged cold storage. Results revealed lower pectin fragments in TS after 60 days of cold storage and shelf life (SL) compared to 30 days of cold storage and 30 + SL, while NN107 maintained the same fragment profile across all time points evaluated. Our results suggest that these important differences in cell wall metabolism during cold storage could be related to the differential berry firmness observed between these contrasting table grape varieties.


Asunto(s)
Calcio/metabolismo , Pared Celular/metabolismo , Frutas/química , Pectinas/metabolismo , Ácidos Urónicos/análisis , Vitis/química , Hidrolasas de Éster Carboxílico/metabolismo , Frío , Almacenamiento de Alimentos , Frutas/anatomía & histología , Frutas/clasificación , Frutas/metabolismo , Fenotipo , Poligalacturonasa/metabolismo , Polisacáridos/metabolismo , Vitis/anatomía & histología , Vitis/clasificación , Vitis/metabolismo
7.
Plants (Basel) ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891264

RESUMEN

During ripening, 'Hass' avocado skin changes from green to purple/black. Low-temperature storage with a controlled atmosphere (CA) is the most widely used method for avocado storage; however, few studies have simulated this technology and considered the days of regular air (RA) storage prior to CA storage. Herein, the effect of delaying the storage of 'Hass' avocado (>30% dry matter) in a CA was examined. Long-term storage conditions (5 °C for 50 days) corresponded to (i) regular air storage (RA), (ii) CA (4 kPa O2 and 6 kPa CO2) and (iii) 10 days in RA + 40 days in a CA and (iv) 20 days in RA + 30 days in a CA. Evaluations were performed during storage and at the ready-to-eat (RTE) stage. Skin color remained unchanged during storage, but at the RTE stage, more color development was observed for fruits stored under CA conditions, as these fruits were purple/black (>50%). At the RTE stage, the anthocyanin content increased, and compared to fruit under RA, fruit under a CA contained a five-fold greater content. A 20-day delay between harvest and CA storage increased the fruit softening rate and skin color development after cold storage, reducing the effectiveness of CA as a postharvest technology for extending storage life.

8.
Plants (Basel) ; 12(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36840114

RESUMEN

Chilling injury is a physiological disorder caused by cold storage in peaches and nectarines. The main symptom of chilling injury is mealiness/wooliness, described as a lack of juice in fruit flesh. In this work, we studied two nectarine varieties (Andes Nec-2 and Andes Nec-3) with contrasting susceptibility to mealiness after cold storage. A non-targeted metabolomic analysis was conducted by GC-MS to understand if changes in metabolite abundance are associated with nectarine mealiness induced by cold storage. Multivariate analyses indicated that in unripe nectarines, cold storage promoted a higher accumulation of amino acids in both varieties. Interestingly, for ripe nectarines, cold storage induced an accumulation of fewer amino acids in both varieties and showed an increased abundance of sugars and organic acids. A pathway reconstruction of primary metabolism revealed that in ripe nectarines, cold storage disrupted metabolite abundance in sugar metabolism and the TCA cycle, leading to a differential accumulation of amino acids, organic acids, and sugars in mealy and juicy nectarines.

9.
Food Chem ; 408: 135215, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36528992

RESUMEN

Exocarp color de-synchronization with softening of 'Hass' avocado is a relevant recurrent problem for the avocado supply chain. This study aimed to unravel the mechanisms driving this de-synchronization integrating omics datasets from avocado exocarp of different storage conditions and color phenotypes. In addition, we propose potential biomarkers to predict color synchronized/de-synchronized fruit. Integration of transcriptomics, proteomics and metabolomics and network analysis revealed eight transcription factors associated with differentially regulated genes between regular air (RA) and controlled atmosphere (CA) and twelve transcription factors related to avocado fruit color de-synchronization control in ready-to-eat stage. CA was positively correlated to auxins, ethylene, cytokinins and brassinosteroids-related genes, while RA was characterized by enrichment of cell wall remodeling and abscisic acid content associated genes. At ready-to-eat higher contents of flavonoids, abscisic acid and brassinosteroids were associated with color-softening synchronized avocados. In contrast, de-synchronized fruit revealed increases of jasmonic acid, salicylic acid and auxin levels.


Asunto(s)
Frutas , Persea , Frutas/genética , Persea/genética , Ácido Abscísico , Brasinoesteroides , Multiómica
10.
Food Chem ; 411: 135498, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36696718

RESUMEN

Consumers around the world prefer high quality table grapes. To achieve higher quality traits at ripening, grapevine producers apply different plant growth regulators. The synthetic cytokinin forchlorfenuron N-(2-chloro-4-pyridinyl)-N'-phenylurea (CPPU) is widely used, its effect on grape quality is poorly understood. We hypothesized that the use of CPPU in pre-flowering can lead to changes in the metabolism that affects grape quality at harvest. Therefore, we investigated the role of CPPU applications on the quality of grapes by integrating proteomics and metabolomics. CPPU-treated grapevines showed a significant increase in berry size and firmness. Proteomic analyses indicated that CPPU-treated berries accumulated enzymes associated with carbohydrate metabolism, glycolysis, and tricarboxylic acid (TCA) cycle at harvest. Metabolomic analyses showed shifts in the abundance of compounds associated with carbohydrate metabolism and TCA cycle in CPPU-treated grapes. These findings suggest that CPPU applications modulate central carbon metabolism, improving grape berry quality.


Asunto(s)
Citocininas , Vitis , Vitis/metabolismo , Frutas/metabolismo , Proteómica , Metabolómica
11.
Plants (Basel) ; 11(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35807733

RESUMEN

1-Methylcyclopropene (1-MCP) is used for extending the postharvest life of the avocado during storage. Evaluated the effect of 1-MCP application at different times after harvest, i.e., 0, 7, 14, and 21 d at 5 °C, to identify the threshold of the ethylene inhibition response in "Hass" avocado. Our results showed that fruits from two maturity stages at harvest: low dry matter (20-23%) and high dry matter (27%). Changes in ethylene production rates and transcript accumulation of genes involved in ethylene metabolism were measured at harvest and during storage. 1-MCP treated fruit up to 14 d of storage showed similar values of firmness and skin color as fruit treated at harvest time. In contrast, when the application was performed after 21 d, the fruit showed ripening attributes similar to those of the untreated ones. To further understand the molecular mechanisms responsible for the lack of response to 1-MCP at 21 d of storage, transcriptomic analysis was performed. Gene ontology analyses based on the DEG analysis showed enrichment of transcripts involved in the 'response to ethylene' for both maturity stages. All genes evaluated showed similar expression profiles induced by cold storage time, with a peak at 21 d of storage and an increased softening of the fruit and peel color. This was a two-year field study, and results were consistent across the two experimental years. Our results should help growers and markets in selecting the optimal timing of 1-MCP application in "Hass" avocados and should contribute to a deeper understanding of the molecular mechanisms of the avocado ripening process.

12.
Food Chem ; 389: 133052, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35489260

RESUMEN

Tissue texture influences the grape berry consumers acceptance. We studied the biological differences between the inner and outer mesocarp tissues in hard and soft berries of table grapes cv NN107. Texture analysis revealed lower levels of firmness in the inner mesocarp as compared with the outer tissue. HPAEC-PAD analysis showed an increased abundance of cell wall monosaccharides in the inner mesocarp of harder berries at harvest. Immunohistochemical analysis displayed differences in homogalacturonan methylesterification and cell wall calcium between soft and hard berries. This last finding correlated with a differential abundance of calcium measured in the alcohol-insoluble residues (AIR) of the inner tissue of the hard berries. Analysis of abundance of polar metabolites suggested changes in cell wall carbon supply precursors, providing new clues in the identification of the biochemical factors that define the texture of the mesocarp of grape berries.


Asunto(s)
Vitis , Calcio/metabolismo , Pared Celular/química , Frutas/metabolismo , Metabolómica , Vitis/química
13.
Plants (Basel) ; 11(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36559585

RESUMEN

Harvest date is a critical parameter for producers and consumers regarding agro-industrial performance. It involves a pleiotropic effect controlling the development of other fruit quality traits through finely controlling regulatory mechanisms. Fruit ripening is a process in which various signals and biological events co-occur and are regulated by hormone signaling that produces the accumulation/degradation of multiple compounds. However, the regulatory mechanisms that control the hormone signaling involved in fruit development and ripening are still unclear. To investigate the issue, we used individuals with early, middle and late harvest dates from a peach segregating population to identify regulatory candidate genes controlling fruit quality traits at the harvest stage and validate them in contrasting peach varieties for this trait. We identified 467 and 654 differentially expressed genes for early and late harvest through a transcriptomic approach. In addition, using the Arabidopsis DAP-seq database and network analysis, six transcription factors were selected. Our results suggest significant hormonal balance and cell wall composition/structure differences between early and late harvest samples. Thus, we propose that higher expression levels of the transcription factors HB7, ERF017 and WRKY70 in early harvest individuals would induce the expression of genes associated with the jasmonic acid pathway, photosynthesis and gibberellins inhibition. While on the other hand, the high expression levels of LHY, CDF3 and NAC083 in late harvest individuals would promote the induction of genes associated with abscisic acid biosynthesis, auxins and cell wall remodeling.

14.
Front Plant Sci ; 12: 684130, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178003

RESUMEN

Peach (Prunus persica) fruits have a fast ripening process and a shelf-life of days, presenting a challenge for long-distance consuming markets. To prolong shelf-life, peach fruits are stored at low temperatures (0 to 7 °C) for at least two weeks, which can lead to the development of mealiness, a physiological disorder that reduces fruit quality and decreases consumer acceptance. Several studies have been made to understand this disorder, however, the molecular mechanisms underlying mealiness are not fully understood. Epigenetic factors, such as DNA methylation, modulate gene expression according to the genetic background and environmental conditions. In this sense, the aim of this work was to identify differentially methylated regions (DMRs) that could affect gene expression in contrasting individuals for mealiness. Peach flesh was studied at harvest time (E1 stage) and after cold storage (E3 stage) for 30 days. The distribution of DNA methylations within the eight chromosomes of P. persica showed higher methylation levels in pericentromeric regions and most differences between mealy and normal fruits were at Chr1, Chr4, and Chr8. Notably, differences in Chr4 co-localized with previous QTLs associated with mealiness. Additionally, the number of DMRs was higher in CHH cytosines of normal and mealy fruits at E3; however, most DMRs were attributed to mealy fruits from E1, increasing at E3. From RNA-Seq data, we observed that differentially expressed genes (DEGs) between normal and mealy fruits were associated with ethylene signaling, cell wall modification, lipid metabolism, oxidative stress and iron homeostasis. When integrating the annotation of DMRs and DEGs, we identified a CYP450 82A and an UDP-ARABINOSE 4 EPIMERASE 1 gene that were downregulated and hypermethylated in mealy fruits, coinciding with the co-localization of a transposable element (TE). Altogether, this study indicates that genetic differences between tolerant and susceptible individuals is predominantly affecting epigenetic regulation over gene expression, which could contribute to a metabolic alteration from earlier stages of development, resulting in mealiness at later stages. Finally, this epigenetic mark should be further studied for the development of new molecular tools in support of breeding programs.

15.
Plants (Basel) ; 10(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34834743

RESUMEN

Fruit development is a complex process that involves the interplay of cell division, expansion, and differentiation. As a model to study fruit development, nectarines incapable of ripening were described as slow ripening. Slow ripening fruits remained firm and exhibited no rise in CO2 or ethylene production rates for one month or more at 20 °C. Different studies suggest that this trait is controlled by a single gene (NAC072). Transcriptome analysis between normal and slow ripening fruits showed a total of 157, 269, 976, and 5.224 differentially expressed genes in each fruit developmental stage analyzed (T1, T2, T3, and T7, respectively), and no expression of NAC072 was found in the slow ripening individuals. Using this transcriptomic information, we identified a correlation of NAC072 with auxin-related genes and two genes associated with terpene biosynthesis. On the other hand, significant differences were observed in hormonal biosynthetic pathways during fruit development between the normal and slow ripening individuals (gibberellin, ethylene, jasmonic acid and abscisic acid). These results suggest that the absence of NAC072 by the direct or indirect expression control of auxins or terpene-related genes prevents normal peach fruit development.

16.
Food Chem ; 342: 128307, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33046285

RESUMEN

Surface pitting is a serious postharvest physiological disorder in sweet cherries that is observed as skin depressions developed days after bruising. This work aims to compare two cultivars displaying different pitting susceptibilities ('Kordia': relatively resistant; 'Sweetheart': relatively susceptible) using metabolomics profiling and cell wall sugar characterization at different developmental stages and during postharvest storage. Kordia was significantly firmer than Sweetheart, with 1.4-fold more alcohol-insoluble residues (AIRs). A significant correlation was observed between AIRs and deformation, indicating that the highest yields of cell wall material are positively correlated with the resistance to rupture. Additionally, free d-galacturonic acid was higher in pitted Sweetheart samples, likely indicating greater pectin degradation in this susceptible cultivar. Higher contents of the p-coumaric acid derivatives L-5-oxoproline and d-galactose in Sweetheart cherries were found. The metabolic changes during storage and cell wall composition could influence the susceptibility to surface pitting.


Asunto(s)
Pared Celular/metabolismo , Conservación de Alimentos , Prunus avium/metabolismo , Carbohidratos/análisis , Metabolómica , Fenoles/metabolismo , Propiedades de Superficie
17.
Plants (Basel) ; 10(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809443

RESUMEN

The firmness of blueberry is one of its most significant quality attributes. Modifications in the composition of the cell wall have been associated with changes in the fruit firmness. In this work, cell wall components and calcium concentration in two blueberry cultivars with contrasting firmness phenotypes were evaluated at harvest and 30 days cold storage (0 °C). High performance anion-exchange chromatography with pulse amperometric detector (HPAEC-PAD) analysis was performed using the "Emerald" (firmer) and "Jewel" (softer) blueberry cultivars, showing increased glucose in the firmer cultivar after cold storage. Moreover, the LM15 antibody, which recognizes xyloglucan domains, displayed an increased signal in the Emerald cultivar after 30 d cold storage. Additionally, the antibody 2F4, recognizing a homogalacturonan calcium-binding domain, showed a greater signal in the firmer Emerald blueberries, which correlates with a higher calcium concentration in the cell wall. These findings suggest that xyloglucan metabolism and a higher concentration of cell wall calcium influenced the firmness of the blueberry fruit. These results open new perspectives regarding the role of cell wall components as xyloglucans and calcium in blueberry firmness.

18.
Plants (Basel) ; 10(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34961114

RESUMEN

The use of plant growth regulators (PGRs) is widespread in commercial table grape vineyards. The synthetic cytokinin CPPU is a PGR that is extensively used to obtain higher quality grapes. However, the effect of CPPU on berry firmness is not clear. The current study investigated the effects of pre-anthesis applications (BBCH15 and BBCH55 stages) of CPPU on 'Thompson Seedless' berry firmness at harvest through a combination of cytological, morphological, and biochemical analyses. Ovaries in CPPU-treated plants presented morphological changes related to cell division and cell wall modification at the anthesis stage (BBCH65). Moreover, immunofluorescence analysis with monoclonal antibodies 2F4 and LM15 against pectin and xyloglucan demonstrated that CPPU treatment resulted in cell wall modifications at anthesis. These early changes have major repercussions regarding the hemicellulose and pectin cell wall composition of mature fruits, and are associated with increased calcium content and a higher berry firmness at harvest.

19.
BMC Genomics ; 11: 43, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20082721

RESUMEN

BACKGROUND: Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury. RESULTS: The analysis allowed us to identify 43 spots -representing about 18% of the total number analyzed- that show statistically significant changes. Thirty-nine of the proteins could be identified by mass spectrometry. Some of the proteins that changed during postharvest had been related to peach fruit ripening and cold stress in the past. However, we identified other proteins that had not been linked to these processes. A graphical display of the relationship between the differentially accumulated proteins was obtained using pairwise average-linkage cluster analysis and principal component analysis. Proteins such as endopolygalacturonase, catalase, NADP-dependent isocitrate dehydrogenase, pectin methylesterase and dehydrins were found to be very important for distinguishing between healthy and chill injured fruit. A categorization of the differentially accumulated proteins was performed using Gene Ontology annotation. The results showed that the 'response to stress', 'cellular homeostasis', 'metabolism of carbohydrates' and 'amino acid metabolism' biological processes were affected the most during the postharvest. CONCLUSIONS: Using a comparative proteomic approach with 2-D DIGE allowed us to identify proteins that showed stage-specific changes in their accumulation pattern. Several proteins that are related to response to stress, cellular homeostasis, cellular component organization and carbohydrate metabolism were detected as being differentially accumulated. Finally, a significant proportion of the proteins identified had not been associated with softening, cold storage or chilling injury-altered fruit before; thus, comparative proteomics has proven to be a valuable tool for understanding fruit softening and postharvest.


Asunto(s)
Frío , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteómica/métodos , Prunus/metabolismo , Cromatografía Liquida , Análisis por Conglomerados , Electroforesis en Gel Bidimensional , Frutas/genética , Análisis Multivariante , Proteínas de Plantas/genética , Análisis de Componente Principal , Prunus/genética , Espectrometría de Masas en Tándem
20.
Metabolites ; 10(4)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316167

RESUMEN

The peach is the third most important temperate fruit crop considering fruit production and harvested area in the world. Exporting peaches represents a challenge due to the long-distance nature of export markets. This requires fruit to be placed in cold storage for a long time, which can induce a physiological disorder known as chilling injury (CI). The main symptom of CI is mealiness, which is perceived as non-juicy fruit by consumers. The purpose of this work was to identify and compare the metabolite and lipid profiles between two siblings from contrasting populations for juice content, at harvest and after 30 days at 0 °C. A total of 119 metabolites and 189 lipids were identified, which showed significant differences in abundance, mainly in amino acids, sugars and lipids. Metabolites displaying significant changes from the E1 to E3 stages corresponded to lipids such as phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG) and lysophosphatidylcholines (LPC), and sugars such as fructose 1 and 1-fructose-6 phosphate. These metabolites might be used as early stage biomarkers associated with mealiness at harvest and after cold storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA