Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Tissue Res ; 390(2): 207-227, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36083358

RESUMEN

In echinoderms, the coelomic epithelium (CE) is reportedly the source of new circulating cells (coelomocytes) as well as the provider of molecular factors such as immunity-related molecules. However, its overall functions have been scarcely studied in detail. In this work, we used an integrated approach based on both microscopy (light and electron) and proteomic analyses to investigate the arm CE in the starfish Marthasterias glacialis during different physiological conditions (i.e., non-regenerating and/or regenerating). Our results show that CE cells share both ultrastructural and proteomic features with circulating coelomocytes (echinoderm immune cells). Additionally, microscopy and proteomic analyses indicate that CE cells are actively involved in protein synthesis and processing, and membrane trafficking processes such as phagocytosis (particularly of myocytes) and massive secretion phenomena. The latter might provide molecules (e.g., immune factors) and fluids for proper arm growth/regrowth. No stem cell marker was identified and no pre-existing stem cell was observed within the CE. Rather, during regeneration, CE cells undergo dedifferentiation and epithelial-mesenchymal transition to deliver progenitor cells for tissue replacement. Overall, our work underlines that echinoderm CE is not a "simple epithelial lining" and that instead it plays multiple functions which span from immunity-related roles as well as being a source of regeneration-competent cells for arm growth/regrowth.


Asunto(s)
Equinodermos , Proteómica , Animales , Epitelio/ultraestructura , Estrellas de Mar , Células Epiteliales
2.
Cell Tissue Res ; 381(3): 411-426, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32350640

RESUMEN

Extracellular matrix (ECM) plays a dynamic role during tissue development and re-growth. Body part regeneration efficiency relies also on effective ECM remodelling and deposition. Among invertebrates, echinoderms are well known for their striking regenerative abilities since they can rapidly regenerate functioning complex structures. To gather insights on the involvement of ECM during arm regeneration, the brittle star Amphiura filiformis was chosen as experimental model. Eight ECM genes were identified and cloned, and their spatio-temporal and quantitative expression patterns were analysed by means of whole mount in situ hybridisation and quantitative PCR on early and advanced regenerative stages. Our results show that almost none of the selected ECM genes are expressed at early stages of regeneration, suggesting a delay in their activation that may be responsible for the high regeneration efficiency of these animals, as described for other echinoderms and in contrast to most vertebrates. Moreover, at advanced stages, these genes are spatially and temporally differentially expressed, suggesting that the molecular regulation of ECM deposition/remodelling varies throughout the regenerative process. Phylogenetic analyses of the identified collagen-like genes reveal complex evolutionary dynamics with many rounds of duplications and losses and pinpointed their homologues in selected vertebrates. The study of other ECM genes will allow a better understanding of ECM contribution to brittle star arm regeneration.


Asunto(s)
Equinodermos/genética , Matriz Extracelular/genética , Extremidades/patología , Hibridación in Situ/métodos , Animales
3.
Dev Biol ; 433(2): 297-309, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29291979

RESUMEN

Regeneration is a post-embryonic developmental process that ensures complete morphological and functional restoration of lost body parts. The repair phase is a key step for the effectiveness of the subsequent regenerative process: in vertebrates, efficient re-epithelialisation, rapid inflammatory/immune response and post-injury tissue remodelling are fundamental aspects for the success of this phase, their impairment leading to an inhibition or total prevention of regeneration. Among deuterostomes, echinoderms display a unique combination of striking regenerative abilities and diversity of useful experimental models, although still largely unexplored. Therefore, the brittle star Amphiura filiformis and the starfish Echinaster sepositus were here used to comparatively investigate the main repair phase events after injury as well as the presence and expression of immune system and extracellular matrix (i.e. collagen) molecules using both microscopy and molecular tools. Our results showed that emergency reaction and re-epithelialisation are similar in both echinoderm models, being faster and more effective than in mammals. Moreover, in comparison to the latter, both echinoderms showed delayed and less abundant collagen deposition at the wound site (absence of fibrosis). The gene expression patterns of molecules related to the immune response, such as Ese-fib-like (starfishes) and Afi-ficolin (brittle stars), were described for the first time during echinoderm regeneration providing promising starting points to investigate the immune system role in these regeneration models. Overall, the similarities in repair events and timing within the echinoderms and the differences with what has been reported in mammals suggest that effective repair processes in echinoderms play an important role for their subsequent ability to regenerate. Targeted molecular and functional analyses will shed light on the evolution of these abilities in the deuterostomian lineage.


Asunto(s)
Extremidades/fisiología , Regeneración/fisiología , Estrellas de Mar/fisiología , Animales , Colágeno/metabolismo , Epidermis/ultraestructura , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Estudios de Asociación Genética , Microscopía Electrónica , Regeneración/genética , Regeneración/inmunología , Especificidad de la Especie , Estrellas de Mar/genética , Estrellas de Mar/inmunología , Factores de Transcripción/fisiología , Cicatrización de Heridas/fisiología
4.
Cell Tissue Res ; 370(1): 13-28, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28331971

RESUMEN

The potential for repairing and replacing cells, tissues, organs and body parts is considered a primitive attribute of life shared by all the organisms, even though it may be expressed to a different extent and which is essential for the survival of both individual and whole species. The ability to regenerate is particularly evident and widespread within invertebrates. In spite of the wide availability of experimental models, regeneration has been comprehensively explored in only a few animal systems (i.e., hydrozoans, planarians, urodeles) leaving many other animal groups unexplored. The regenerative potential finds its maximum expression in echinoderms. Among echinoderm classes, asteroids offer an impressive range of experimental models in which to study arm regeneration at different levels. Many studies have been recently carried out in order to understand the regenerative mechanisms in asteroids and the overall morphological processes have been well documented in different starfish species, such as Asterias rubens, Leptasterias hexactis and Echinaster sepositus. In contrast, very little is known about the molecular mechanisms that control regeneration development and patterning in these models. The origin and the fate of cells involved in the regenerative process remain a matter of debate and clear insights will require the use of complementary molecular and proteomic approaches to study this problem. Here, we review the current knowledge regarding the cellular, proteomic and molecular aspects of asteroid regeneration.


Asunto(s)
Regeneración , Estrellas de Mar/fisiología , Animales , Regulación de la Expresión Génica , Proteómica/métodos , Estrellas de Mar/anatomía & histología , Estrellas de Mar/genética , Estrellas de Mar/ultraestructura , Cicatrización de Heridas
5.
J R Soc Interface ; 19(193): 20220226, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35946165

RESUMEN

Repeated polygonal patterns are pervasive in natural forms and structures. These patterns provide inherent structural stability while optimizing strength-per-weight and minimizing construction costs. In echinoids (sea urchins), a visible regularity can be found in the endoskeleton, consisting of a lightweight and resistant micro-trabecular meshwork (stereom). This foam-like structure follows an intrinsic geometrical pattern that has never been investigated. This study aims to analyse and describe it by focusing on the boss of tubercles-spine attachment sites subject to strong mechanical stresses-in the common sea urchin Paracentrotus lividus. The boss microstructure was identified as a Voronoi construction characterized by 82% concordance to the computed Voronoi models, a prevalence of hexagonal polygons, and a regularly organized seed distribution. This pattern is interpreted as an evolutionary solution for the construction of the echinoid skeleton using a lightweight microstructural design that optimizes the trabecular arrangement, maximizes the structural strength and minimizes the metabolic costs of secreting calcitic stereom. Hence, this identification is particularly valuable to improve the understanding of the mechanical function of the stereom as well as to effectively model and reconstruct similar structures in view of future applications in biomimetic technologies and designs.


Asunto(s)
Paracentrotus , Animales , Esqueleto , Columna Vertebral , Estrés Mecánico
6.
Bioinspir Biomim ; 16(1)2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-32927446

RESUMEN

The endoskeleton of echinoderms (Deuterostomia: Echinodermata) is of mesodermal origin and consists of cells, organic components, as well as an inorganic mineral matrix. The echinoderm skeleton forms a complex lattice-system, which represents a model structure for naturally inspired engineering in terms of construction, mechanical behaviour and functional design. The sea urchin (Echinodermata: Echinoidea) endoskeleton consists of three main structural components: test, dental apparatus and accessory appendages. Although, all parts of the echinoid skeleton consist of the same basic material, their microstructure displays a great potential in meeting several mechanical needs according to a direct and clear structure-function relationship. This versatility has allowed the echinoid skeleton to adapt to different activities such as structural support, defence, feeding, burrowing and cleaning. Although, constrained by energy and resource efficiency, many of the structures found in the echinoid skeleton are optimized in terms of functional performances. Therefore, these structures can be used as role models for bio-inspired solutions in various industrial sectors such as building constructions, robotics, biomedical and material engineering. The present review provides an overview of previous mechanical and biomimetic research on the echinoid endoskeleton, describing the current state of knowledge and providing a reference for future studies.


Asunto(s)
Biomimética , Equinodermos , Animales , Erizos de Mar
7.
J Hazard Mater ; 398: 122848, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32474317

RESUMEN

The information concerning the toxicity of sinking microplastics (MPs) on benthic marine animals, particularly benthic grazers, is still scant. No study focused on biological weathering of sinked MPs operated by benthic organisms. This study aims at investigating the ingestion and the effects induced by 7-days dietary exposure to environmentally relevant amount (8, 80 and 800 particles/g of food) of irregular shaped and sized (diameter 12.6-1,065 µm; mean diameter 316 ± 12 µm) polyethylene terephthalate microplastics (PET-MPs) on a common marine benthic grazer, the sea urchin Paracentrotus lividus. Adverse effects were investigated on digestive tract at biochemical (oxidative stress biomarkers) and tissue level (histopathological analyses). Potential alteration of MP structure/surface and PET macromolecules due to the ingestion of PET-MPs within the sea urchin digestive tract were investigated. Results showed that PET-MPs were efficiently egested by sea urchins without producing histological alterations on digestive tract tissues, only inducing a slight modulation of oxidative status. Sea urchin grazing activity and the related transit of PET-MPs within animal digestive tract slightly affected MP structure and PET composition. These findings suggest that PET-MPs might represent an hazard for benthic grazer organisms, which can partially contribute to the degradation of PET in marine ecosystems.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Ecosistema , Plásticos/toxicidad , Polietileno , Tereftalatos Polietilenos/toxicidad , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
8.
Results Probl Cell Differ ; 65: 285-320, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083925

RESUMEN

Reparative regeneration is defined as the replacement of lost adult body parts and is a phenomenon widespread yet highly variable among animals. This raises the question of which key cellular and molecular mechanisms have to be implemented in order to efficiently and correctly replace entire body parts in any animal. To address this question, different studies using an integrated cellular and functional genomic approach to study regeneration in stellate echinoderms (crinoids, asteroids and ophiuroids) had been carried out over the last few years. The phylum Echinodermata is recognized for the striking regeneration potential shown by the members of its different clades. Indeed, stellate echinoderms are considered among the most useful and tractable experimental models for carrying comprehensive studies focused on ecological, developmental and evolutionary aspects. Moreover, most of them are tractable in the laboratory and, thus, should allow us to understand the underlying mechanisms, cellular and molecular, which are involved. Here, a comprehensive analysis of the cellular/histological components of the regenerative process in crinoids, asteroids and ophiuroids is described and compared. However, though this knowledge provided us with some clear insights into the global distribution of cell types at different times, it did not explain us how the recruited cells are specified (and from which precursors) over time and where are they located in the animal. The precise answer to these queries needs the incorporation of molecular approaches, both descriptive and functional. Yet, the molecular studies in stellate echinoderms are still limited to characterization of some gene families and protein factors involved in arm regeneration but, at present, have not shed light on most of the basic mechanisms. In this context, further studies are needed specifically to understand the role of regulatory factors and their spatio-temporal deployment in the growing arms. A focus on developing functional tools over the next few years should be of fundamental importance.


Asunto(s)
Equinodermos/clasificación , Equinodermos/fisiología , Regeneración , Animales , Evolución Biológica
9.
Mar Environ Res ; 93: 123-32, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24008006

RESUMEN

Echinoderms and sponges share a unique feature that helps them face predators and other environmental pressures. They both possess collagenous tissues with adaptable viscoelastic properties. In terms of morphology these structures are typical connective tissues containing collagen fibrils, fibroblast- and fibroclast-like cells, as well as unusual components such as, in echinoderms, neurosecretory-like cells that receive motor innervation. The mechanisms underpinning the adaptability of these tissues are not completely understood. Biomechanical changes can lead to an abrupt increase in stiffness (increasing protection against predation) or to the detachment of body parts (in response to a predator or to adverse environmental conditions) that are regenerated. Apart from these advantages, the responsiveness of echinoderm and sponge collagenous tissues to ionic composition and temperature makes them potentially vulnerable to global environmental changes.


Asunto(s)
Tejido Conectivo/anatomía & histología , Tejido Conectivo/fisiología , Paracentrotus/anatomía & histología , Poríferos/anatomía & histología , Animales , Fenómenos Biomecánicos , Tejido Conectivo/ultraestructura , Ambiente , Microscopía Electrónica de Transmisión
10.
Ecotoxicology ; 16(1): 95-108, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17253161

RESUMEN

Echinoderms are valuable test species in marine ecotoxicology and offer a wide range of biological processes appropriate for this approach. In spite of this potential, available data in literature are still rather limited, particularly with regard to the possible effects of endocrine disrupter compounds (EDCs). This review presents echinoderms as useful models for ecotoxicological tests and gives a brief overview of the most significant results obtained in recent years, particularly in the context of the COMPRENDO EU project. In this research project two different aspects of echinoderm physiology, plausibly regulated by humoral mechanisms, were investigated: reproductive biology and regenerative development. Selected EDCs suspected for their androgenic or antiandrogenic action were tested at low concentrations. The results obtained so far showed that different parameters such as regenerative growth, histological pattern, egg diameter and gonad maturation were affected by the exposure to the selected compounds. These results substantiate that reproductive and regenerative phenomena of echinoderms can be considered valuable alternative models for studies on EDCs and confirm that these compounds interfere with fundamental physiological processes, including growth, development and reproductive competence.


Asunto(s)
Equinodermos/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Modelos Animales , Animales , Equinodermos/fisiología , Regeneración/efectos de los fármacos , Reproducción/efectos de los fármacos , Agua de Mar , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA