Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 33(9): 10065-10076, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31226003

RESUMEN

The adenylate cyclase (CyaA) toxin is a major virulence factor of Bordetella pertussis, the causative agent of whooping cough. CyaA is synthetized as a pro-toxin, pro-CyaA, and converted into its cytotoxic form upon acylation of two lysines. After secretion, CyaA invades eukaryotic cells and produces cAMP, leading to host defense subversion. To gain further insights into the effect of acylation, we compared the functional and structural properties of pro-CyaA and CyaA proteins. HDX-MS results show that the refolding process of both proteins upon progressive urea removal is initiated by calcium binding to the C-terminal RTX domain. We further identified a critical hydrophobic segment, distal from the acylation region, that folds at higher urea concentration in CyaA than in pro-CyaA. Once refolded into monomers, CyaA is more compact and stable than pro-CyaA, due to a complex set of interactions between domains. Our HDX-MS data provide direct evidence that the presence of acyl chains in CyaA induces a significant stabilization of the apolar segments of the hydrophobic domain and of most of the acylation region. We propose a refolding model dependent on calcium and driven by local and distal acylation-dependent interactions within CyaA. Therefore, CyaA acylation is not only critical for cell intoxication, but also for protein refolding into its active conformation. Our data shed light on the complex relationship between post-translational modifications, structural disorder and protein folding. Coupling calcium-binding and acylation-driven folding is likely pertinent for other repeat-in-toxin cytolysins produced by many Gram-negative bacterial pathogens.-O'Brien, D. P., Cannella, S. E., Voegele, A., Raoux-Barbot, D., Davi, M., Douché, T., Matondo, M., Brier, S., Ladant, D., Chenal, A. Post-translational acylation controls the folding and functions of the CyaA RTX toxin.


Asunto(s)
Toxina de Adenilato Ciclasa/química , Bordetella pertussis/metabolismo , Procesamiento Proteico-Postraduccional , Acilación , Toxina de Adenilato Ciclasa/metabolismo , Secuencia de Aminoácidos , Naftalenosulfonatos de Anilina/farmacología , Animales , Bordetella pertussis/genética , Eritrocitos/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/química , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Ovinos , Relación Estructura-Actividad , Espectrometría de Masas en Tándem , Urea
2.
J Biol Chem ; 289(44): 30702-30716, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25231985

RESUMEN

The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.


Asunto(s)
Toxina de Adenilato Ciclasa/química , Proteínas Bacterianas/química , Bordetella pertussis/enzimología , Calcio/química , Acilación , Toxina de Adenilato Ciclasa/aislamiento & purificación , Toxina de Adenilato Ciclasa/farmacología , Animales , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/farmacología , Cromatografía en Gel , Dicroismo Circular , Eritrocitos/efectos de los fármacos , Eritrocitos/fisiología , Hemólisis , Procesamiento Proteico-Postraduccional , Replegamiento Proteico , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Ovinos , Urea/química
3.
Pathog Dis ; 76(8)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452651

RESUMEN

The adenylate cyclase toxin (CyaA) is a multi-domain protein secreted by Bordetella pertussis, the causative agent of whooping cough. CyaA is involved in the early stages of respiratory tract colonization by Bordetella pertussis. CyaA is produced and acylated in the bacteria, and secreted via a dedicated secretion system. The cell intoxication process involves a unique mechanism of transport of the CyaA toxin catalytic domain (ACD) across the plasma membrane of eukaryotic cells. Once translocated, ACD binds to and is activated by calmodulin and produces high amounts of cAMP, subverting the physiology of eukaryotic cells. Here, we review our work on the identification and characterization of a critical region of CyaA, the translocation region, required to deliver ACD into the cytosol of target cells. The translocation region contains a segment that exhibits membrane-active properties, i.e. is able to fold upon membrane interaction and permeabilize lipid bilayers. We proposed that this region is required to locally destabilize the membrane, decreasing the energy required for ACD translocation. To further study the translocation process, we developed a tethered bilayer lipid membrane (tBLM) design that recapitulate the ACD transport across a membrane separating two hermetic compartments. We showed that ACD translocation is critically dependent on calcium, membrane potential, CyaA acylation and on the presence of calmodulin in the trans compartment. Finally, we describe how calmodulin-binding triggers key conformational changes in ACD, leading to its activation and production of supraphysiological concentrations of cAMP.


Asunto(s)
Toxina de Adenilato Ciclasa/metabolismo , Bordetella pertussis/metabolismo , Calmodulina/metabolismo , AMP Cíclico/metabolismo , Acilación , Toxina de Adenilato Ciclasa/química , Calcio/metabolismo , Membrana Celular/metabolismo , Células Eucariotas , Humanos , Potenciales de la Membrana , Permeabilidad , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
4.
Toxicon ; 149: 37-44, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29337218

RESUMEN

The adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the diversity of calcium concentrations it is exposed to in the successive environments encountered in the course of the intoxication process.


Asunto(s)
Toxina de Adenilato Ciclasa/química , Calcio/química , Modelos Biológicos , Tos Ferina/microbiología , Toxina de Adenilato Ciclasa/metabolismo , Bordetella pertussis , Células Eucariotas/microbiología , Dominios Proteicos , Pliegue de Proteína , Sistemas de Translocación de Proteínas , Transporte de Proteínas
5.
Sci Rep ; 7: 42065, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186111

RESUMEN

Bordetella pertussis, the causative agent of whooping cough, secretes an adenylate cyclase toxin, CyaA, which invades eukaryotic cells and alters their physiology by cAMP overproduction. Calcium is an essential cofactor of CyaA, as it is the case for most members of the Repeat-in-ToXins (RTX) family. We show that the calcium-bound, monomeric form of CyaA, hCyaAm, conserves its permeabilization and haemolytic activities, even in a fully calcium-free environment. In contrast, hCyaAm requires sub-millimolar calcium in solution for cell invasion, indicating that free calcium in solution is involved in the CyaA toxin translocation process. We further report the first in solution structural characterization of hCyaAm, as deduced from SAXS, mass spectrometry and hydrodynamic studies. We show that hCyaAm adopts a compact and stable state that can transiently conserve its conformation even in a fully calcium-free environment. Our results therefore suggest that in hCyaAm, the C-terminal RTX-domain is stabilized in a high-affinity calcium-binding state by the N-terminal domains while, conversely, calcium binding to the C-terminal RTX-domain strongly stabilizes the N-terminal regions. Hence, the different regions of hCyaAm appear tightly connected, leading to stabilization effects between domains. The hysteretic behaviour of CyaA in response to calcium is likely shared by other RTX cytolysins.


Asunto(s)
Toxina de Adenilato Ciclasa/química , Toxina de Adenilato Ciclasa/metabolismo , Bordetella pertussis/enzimología , Calcio/metabolismo , Coenzimas/metabolismo , Hidrodinámica , Espectrometría de Masas , Transporte de Proteínas , Dispersión del Ángulo Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA