Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Environ Sci (China) ; 98: 94-102, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33097163

RESUMEN

When wood-based activated carbon was tailored with quaternary ammonium/epoxide (QAE) forming compounds (QAE-AC), this tailoring dramatically improved the carbon's effectiveness for removing perfluorooctanoic acid (PFOA) from groundwater. With favorable tailoring, QAE-AC removed PFOA from groundwater for 118,000 bed volumes before half-breakthrough in rapid small scale column tests, while the influent PFOA concentration was 200 ng/L. The tailoring involved pre-dosing QAE at an array of proportions onto this carbon, and then monitoring bed life for PFOA removal. When pre-dosing with 1 mL QAE, this PFOA bed life reached an interim peak, whereas bed life was less following 3 mL QAE pre-dosing, then PFOA bed life exhibited a steady rise for yet subsequently higher QAE pre-dosing levels. Large-scale atomistic modelling was used herein to provide new insight into the mechanism of PFOA removal by QAE-AC. Based on experimental results and modelling, the authors perceived that the QAE's epoxide functionalities cross-linked with phenolics that were present along the activated carbon's graphene edge sites, in a manner that created mesopores within macroporous regions or created micropores within mesopores regions. Also, the QAE could react with hydroxyls outside of these pore, including the hydroxyls of both graphene edge sites and other QAE molecules. This latter reaction formed new pore-like structures that were external to the activated carbon grains. Adsorption of PFOA could occur via either charge balance between negatively charged PFOA with positively charged QAE, or by van der Waals forces between PFOA's fluoro-carbon tail and the graphene or QAE carbon surfaces.


Asunto(s)
Caprilatos , Carbón Orgánico , Adsorción , Compuestos Epoxi , Fluorocarburos
2.
Environ Sci Technol ; 53(17): 10295-10302, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31429285

RESUMEN

Radium measurements in high total dissolved solids (TDS) fluids from oil and gas extraction can have unfavorable precision and accuracy, in part because these high-level impurities incur attenuation. γ spectroscopy is often recommended for determining radium activities in these fluids, but even this method can produce a range of reported activities for the same sample. To reduce measurement duration and to maintain or improve accuracy, we propose a method to rapidly assess both 226Ra and 228Ra and to account for the self-attenuation of γ rays in high-TDS oil and gas fluids when they are monitored by a well detector. In this work, comparisons between a NaCl-only and a multi-cation-chloride synthetic brine spiked with known amounts of 226Ra and 228Ra indicated that both the TDS concentration and the type of TDS (i.e., Na only vs Na-Mg-Ba-Ca-Sr) influenced self-attenuation in well-detector γ spectroscopy, thus highlighting the need to correct for this TDS-influenced self-attenuation. Radium activities can be underestimated if the correction is not applied. For instance, 226Ra activities could be ∼40% lower in a sample when measured directly at the 186 keV energy level if the attenuation of the high TDS of the fluid is not considered. We also showed that using a NaCl-only brine to match the matrix of high-TDS oil and gas brines is inadequate to produce accurate measurements, rather, the full set of cations should be included.


Asunto(s)
Radio (Elemento) , Contaminantes Radiactivos del Agua , Rayos gamma , Análisis Espectral , Agua
3.
J Environ Manage ; 234: 21-27, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30599326

RESUMEN

The authors tailored coconut-based activated carbons with a quaternary ammonium epoxide (QAE) surfactant that greatly increased the carbon's capacity for sorbing nitrate from water. This QAE-tailored carbon processed deionized water spiked with 50 mg/L NO3- through rapid small scale column tests; and achieved half-breakthrough at 477 bed volumes. This favorably compared to 52 bed volumes for the pristine coconut activated carbon. The QAE employed herein was QUAB 360. Most favorable pretreatment of the carbon was achieved via NaOH immersion, which created extensive phenolic functionality on the carbon's graphene edges, and raised the carbon's slurry pH to 9.3-9.6. These phenolics served as the anchor for the QUAB's epoxide reactions. This pretreatment offered the highest QUAB loading onto the carbon, which in turn netted the most nitrate removal. Per X-ray photoelectron spectroscopy, favorable QUAB360 preloading incurred a 1.62% increase in the quaternary N content of these activated carbons. The phenolic functionality that followed pretreatment was discerned by Boehm titrations; and these mathematically matched with Gaussian-based models that were fitted to incremental titration data. The most favorable QUAB-loaded variants were the ones whose pretreated precursors had exhibited the highest peak of functionality in the 9.3-10.4 pH range-corresponding to the pKa of phenolics. If the precursor pH was below the 9.3-9.6 range-as induced by acids or H2O2, then the QUAB's epoxide intermediate apparently over-reacted with the hydroxylated functionality of other QUAB molecules, rather than with phenolic functionality of the carbon's graphene edge sites.


Asunto(s)
Carbón Orgánico , Cocos , Adsorción , Compuestos Epoxi , Peróxido de Hidrógeno
4.
Water Sci Technol ; 78(7): 1489-1498, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30427789

RESUMEN

The authors used a nitric acid (HNO3)-sodium dodecyl benzene sulfonate (SDBS) method to modify a lignite-based activated carbon. These modified carbons were appraised for their removal of Cd(II) from aqueous solutions. Response surface methodology was employed to optimize the preparation factors including nitric acid concentration CN, temperature T and SDBS concentration CS. Statistical analysis indicated that the interaction of CN and CS incurred the most effect on the maximum cadmium adsorption capacity (Qm). The optimal Qm appeared at CN = 3.29 mol/L, T = 76 °C and CS=30,700 mg/L. The optimal protocol achieved 44.21 mg/g Qm for Cd(II) which was about 7 times larger than for this pristine lignite activated carbon (LAC) (6.78 mg/g). The physical-chemical properties of the modified activated carbons following each synthesis step were characterized relative to their surface area, oxygen functionality, and external surface charge. It was confirmed that the developed surface area, functional groups and negative charges were mainly responsible for the higher adsorption capacity for the LAC that have been more favorably tailored by this HNO3-SDBS protocol.


Asunto(s)
Cadmio/análisis , Ácido Nítrico/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Carbono , Concentración de Iones de Hidrógeno , Tensoactivos/química , Aguas Residuales
5.
J Environ Manage ; 116: 107-12, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23295677

RESUMEN

The mechanism for the removal of Zn(II) by using coal mine drainage sludge (CMDS) was investigated by spectroscopic analysis and observations of batch tests using model materials. Zeta potential analysis showed that CMDS(25) (dried at 25 °C) and CMDS(550) (dried at 550 °C) had a much lower isoelectric point of pH (pH(IEP)) than either goethite or calcite, which are the main constituents of CMDS. This indicates that the negatively charged anion (sulfate) was incorporated into the structural networks and adsorbed on the surface of CMDS via outer-sphere complexation. The removal of Zn(II) by CMDS was thought to be primarily caused by sulfate-complexed iron (oxy)hydroxide and calcite. In particular, the electrostatic attraction of the negatively charged functional group, FeOH-SO(4)(2-), to the dissolved Zn(II) could provide high removal efficiencies over a wide pH range. Thermodynamic modeling and Fourier transform infrared spectroscopy (FT-IR) demonstrated that ZnSO(4) is the dominant species in the pH range 3-7 as the sulfate complexes with the hydroxyl groups, whereas the precipitation of Zn(II) as ZnCO(3) or Zn(5)(CO(3))(2) (OH)(6) through the dissolution of calcite is the dominant mechanism in the pH range 7-9.6.


Asunto(s)
Minas de Carbón , Contaminantes Químicos del Agua/metabolismo , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Compuestos de Hierro/química , Minerales/química , Aguas del Alcantarillado , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química , Zinc/química , Zinc/metabolismo
6.
Bioresour Technol ; 344(Pt A): 126161, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34678453

RESUMEN

Using waste biomass to prepare various products by environmentally benign processes is a good way to practice green and sustainable development. In this paper, high porosity and surface area biomass activated carbon was obtained by pyrolysis of pine sawdust without using any chemicals after steam bursting pretreatment. Under hydrothermal conditions at 160 ℃, the differences of steam bursting at 300, 500, or 700 psi pressures on the structure and surface chemical groups of the final activated carbons product were compared. The characterization showed that the specific surface areas and micropore volumes decreased with the increase of pressure, while the relative content of oxygen-containing functional groups changed slightly. The sample obtained following 300 psi pretreatment (HPB300) offered the highest BET surface area and pore volume, 962 m2/g and 0.526 cm3/g respectively, and which also achieved the highest adsorption amounts for both methylene blue (MB) and perfluorooctanoic acid (PFOA).


Asunto(s)
Carbón Orgánico , Azul de Metileno , Adsorción , Biomasa , Caprilatos , Fluorocarburos , Porosidad , Vapor
7.
Environ Sci Technol ; 45(19): 8529-35, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21866938

RESUMEN

Demonstration-scale metal pouring emission tests and bench-scale Curie-point pyrolysis emission tests were conducted to identify and quantify the hazardous air pollutant (HAP) emissions of five kinds of casting materials, namely, bituminous coal, cellulose, conventional phenolic urethane binder (PUB), naphthalene-depleted PUB, and a collagen-based binder. For a given casting material, the major HAP species generated in Curie-point pyrolysis were essentially the same as those generated in demonstration-scale metal pouring. The 8-10 HAP species identified in the Curie-point pyrolysis tests comprised 65-98% (by weight) of the total HAP emissions quantified in the demonstration-scale pouring emission tests. Furthermore, with these two protocols, we appraised the relative emission changes that would be associated with (a) replacing conventional PUB with collagen-based binder, (b) replacing conventional PUB with naphthalene-depleted PUB, and (c) replacing bituminous coal with cellulose for making sand molds or cores in the casting process. The relative emission changes associated with the use of alternative casting materials exhibited similar trends for most of the major HAP species in the demonstration-scale pouring and Curie-point pyrolysis emission tests. The results indicated that Curie-point pyrolysis emission test could be employed as a convenient and cost-effective screening tool to identify the major HAP species and to compare the relative HAP emission levels for various casting materials.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Residuos Peligrosos/análisis , Metalurgia/métodos , Metales/química , Temperatura , Benceno/análisis , Uretano/química
8.
Environ Sci Technol ; 45(7): 3062-8, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21366305

RESUMEN

An alternative fuel to replace foundry coke in cupolas was developed from waste anthracite fines. Waste anthracite fines were briquetted with Si-containing materials and treated in carbothermal (combination of heat and carbon) conditions that simulated the cupola preheat zone to form silicon carbide nanowires (SCNWs). SCNWs can provide hot crushing strengths, which are important in cupola operations. Lab-scale experiments confirmed that the redox level of the Si-source significantly affected the formation of SiC. With zerovalent silicon, SCNWs were formed within the anthracite pellets. Although amorphous Si (+4) plus anthracite formed SiC, these conditions did not transform the SiC into nanowires. Moreover, under the test conditions, SiC was not formed between crystallized Si (+4) and anthracite. In a full-scale demonstration, bricks made from anthracite fines and zerovalent silicon successfully replaced a part of the foundry coke in a full-scale cupola. In addition to saving in fuel cost, replacing coke by waste anthracite fines can reduce energy consumption and CO2 and other pollution associated with conventional coking.


Asunto(s)
Fuentes Generadoras de Energía , Residuos Industriales/análisis , Metalurgia/instrumentación , Compuestos de Silicona/química , Administración de Residuos/métodos , Compuestos Inorgánicos de Carbono/química , Coque/análisis , Incineración , Metalurgia/métodos
9.
J Environ Radioact ; 220-221: 106300, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32560888

RESUMEN

Concentrations of naturally occurring radioactive material (NORM) in Marcellus Shale produced water presents a challenge for effective management and treatment, because of the vast fluid volumes generated. With an increased emphasis on beneficial reuse and resource recovery from the produced waters, a rapid, yet reliable, method for quantifying radium in these produced waters is needed. The high total dissolved solids (TDS) concentration introduces difficulties when measuring 226Ra by recommended EPA methods that were specifically developed several decades ago for drinking water. While other techniques for measuring radium in these high-TDS fluids have since been developed, these newer techniques often require extensive and complicated pre-concentration steps; and they thus require extensive analytical chemistry skills, utilize hazardous chemicals like hydrofluoric acid, demand long holding times or measurement times, and require high sample volumes. We present a rapid method for 226Ra measurements in high-TDS produced waters by liquid scintillation counting, which has been corroborated herein by concurrent gamma spectrometry analyses. Samples were prepared for analysis by evaporating the fluid and re-suspending the evaporate with acidified distilled deionized water prior to liquid scintillation counting for 1 h. This protocol yielded radium recoveries ≥93%. Per this protocol, the alpha and beta spectra of 226Ra and its daughters were computationally separated by alpha-beta discrimination and spectrum deconvolution. The minimum detectable activities of 226Ra was 0.33 Bq/L (9.0 pCi/L) when the counting time was 60 min and the sample volume was 4 mL. Nine produced waters of varying TDS and radium concentrations from the Marcellus Shale Formation were analyzed by this method and compared with gamma spectroscopy; and these yielded comparable results with an R2 of 0.92. The reduced sample preparation steps, low cost, and rapid analysis position this as a well-suited protocol for field-appraisal and screening, when compared to comprehensive radiochemical analysis. We offer that for a given produced water region, routine and local liquid scintillation analyses can be compared and calibrated with infrequent gamma spec analyses, so as to yield a near-real time protocol for monitoring 226Ra levels during hydrofracturing operations. We present this as a pragmatic and efficient protocol for monitoring 226Ra when produced water samples host low levels of 228Ra-since the progeny of 228Ra can significantly confound the LSC analyses.


Asunto(s)
Monitoreo de Radiación , Conteo por Cintilación , Fracking Hidráulico , Radio (Elemento) , Contaminantes Radiactivos del Agua
10.
J Environ Radioact ; 211: 106070, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31585380

RESUMEN

Beneficial reuse and resource recovery of produced water often require treatment to remove radium before valuable products are extracted. The radium content of the treatment waste solids and beneficial products must be accurately determined when evaluating the efficacy and social validity of such treatments. While gamma spectroscopy remains the recommended method for radium measurements, these measurements can be impacted by the composition/mineralogy of the solids, which influence the attenuation of the gamma decay energy - with denser sediments incurring greater degrees of attenuation. This self-attenuation must be accounted for when accurately measuring radium, otherwise radium measurements are found to be inaccurate, sometimes by as much as 50%. To meet industry needs, measurements should be both accurate and rapid, even for small sample sizes. Consequently, we propose a rapid method for accurate radium measurements with an empirical technique to account for sample attenuation in well-detector gamma spectroscopy. This technique utilizes the sample density and sample volume in the measuring vial. These corrections are relevant to a wide range of solid samples and sediment densities that may be encountered during treatment and management of oil and gas solids, including clays, environmental sediment samples, sand grains, and precipitated salts. These corrections can also be applied for situations were low volumes of material are present, as in bench scale studies, thereby rendering this technique applicable to a wider range of scenarios.


Asunto(s)
Radio (Elemento)/análisis , Rayos gamma , Monitoreo de Radiación , Análisis Espectral , Aguas Residuales
11.
Chemosphere ; 242: 125233, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31896207

RESUMEN

Acid/base/oxidant pretreatment influenced subsequent quaternary ammonium epoxide compounds modified carbon (QAE-AC) and hence PFOA and nitrate removal. This work discerned that the most favorable QAE-AC protocol for PFOA removal was achieved when the wood carbon pretreated with HNO3 to adjust the carbon's slurry pH to 4.77, and tailored with the QUAB188. For nitrate removal, the most favorable when the carbon was pretreated with NaOH to raise the carbon's slurry pH to 9.34, and then loaded with the QUAB360. Based on experimentally results and molecular model, we found that pore volume, phenolic groups and the surface charge were the main factors affecting the PFOA removal, while the only factor affecting nitrate removal was surface charge. The QUAB's epoxide functionalities have cross-linked with phenolics along the activated carbon's graphene edge sites. QAE is preferentially reacted with the phenolic in the micropores and mesopores of carbon, and some QAE molecules form new "pore-like structures" outside the pores with the graphene planes or other QAE molecules. This pore-like structure hosted adsorption capacity by the quaternary ammonium. The favorable PFOA adsorption sites were in smaller mesopores via both hydrophobic interaction and electrostatic interaction; and nitrate sorption was occurring in the smaller micropores via anion exchange. Therefore, it can be considered that QAE-AC can simultaneously adsorb PFOA and nitrate in water.


Asunto(s)
Caprilatos/química , Fluorocarburos/química , Modelos Químicos , Nitratos/química , Compuestos de Amonio Cuaternario/química , Contaminantes Químicos del Agua/química , Adsorción , Compuestos de Amonio/química , Aniones , Carbón Orgánico/química , Compuestos Epoxi , Oxidantes , Agua
12.
Sci Total Environ ; 660: 577-585, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30641385

RESUMEN

This research reports an integrated method for synthesizing a quaternary nitrogen-grafted activated carbon that is derived from a subbituminous coal source. The protocol employed nitric acid oxidation, thermal ammonia treatment and methyl iodide quaternization. The quaternized product greatly increased trifluoroacetate (TFA, CF3COO-) removal from a groundwater source. This quaternary nitrogen-grafted carbon (designated AWNQ) exhibited the highest TFA adsorption capacity of 32.9 mg/g and exhibited high energy of adsorption for TFA. Also, when processing groundwater that had been spiked with 200 ppb TFA, this quaternary nitrogen-grafted carbon removed TFA to 3 ppb breakthrough for 1860 BV, which was twelve times longer than the 150 BV for the pristine carbon. The enhanced sorption was attributed to its high quaternary nitrogen ratio (1.30, at.%), which offered 0.69 meq/g positive charge. Furthermore, high regeneration efficiency (89.5%) was achieved by the proposed regeneration protocol. The mixed regenerant (ethanol and NaCl solution) effectively stripped off the loaded TFA and regenerated the quaternary nitrogen sites. This quaternary nitrogen-grafted carbon with its fast and high uptake capacity offered technical promise for TFA removal from groundwater.

13.
Environ Sci Process Impacts ; 21(2): 308-323, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30382267

RESUMEN

Unconventional oil and gas residual solid wastes are generally disposed in municipal waste landfills (RCRA Subtitle D), but they contain valuable raw materials such as proppant sands. A novel process for recovering raw materials from hydraulic fracturing residual waste is presented. Specifically, a novel hydroacoustic cavitation system, combined with physical separation devices, can create a distinct stream of highly concentrated sand, and another distinct stream of clay from the residual solid waste by the dispersive energy of cavitation conjoined with ultrasonics, ozone and hydrogen peroxide. This combination cleaned the sand grains, by removing previously aggregated clays and residues from the sand surfaces. When these unit operations were followed by a hydrocyclone and spiral, the solids could be separated by particle size, yielding primarily cleaned sand in one flow stream; clays and fine particles in another; and silts in yet a third stream. Consequently, the separation of particle sizes also affected radium distribution - the sand grains had low radium activities, as lows as 0.207 Bq g-1 (5.6 pCi g-1). In contrast, the clays had elevated radium activities, as high as 1.85-3.7 Bq g-1 (50-100 pCi g-1) - and much of this radium was affiliated with organics and salts that could be separated from the clays. We propose that the reclaimed sand could be reused as hydraulic fracturing proppant. The separation of sand from silt and clay could reduce the volume and radium masses of wastes that are disposed in landfills. This could represent a significant savings to facilities handling oil and gas waste, as much as $100 000-300 000 per year. Disposing the radium-enriched salts and organics downhole will mitigate radium release to the surface. Additionally, the reclaimed sand could have market value, and this could represent as much as a third of the cost savings. Tests that employed the toxicity characteristic leaching protocol (TCLP) on these separated solids streams determined that this novel treatment diminished the risk of radium mobility for the reclaimed sand, clays or disposed material, rendering them better suited for landfilling.


Asunto(s)
Fracking Hidráulico , Residuos Radiactivos , Eliminación de Residuos/métodos , Acústica , Metales/análisis , Tamaño de la Partícula , Radio (Elemento)/análisis , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos
14.
Chemosphere ; 201: 756-763, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29550569

RESUMEN

In order to obtain a high adsorption capacity for perchlorate, the epoxide-forming quaternary ammonium (EQA) compounds were chemically bonded onto granular activated carbon (GAC) surface by cationic reaction. The optimum preparation condition of the cationic GAC was achieved while applying softwood-based Gran C as the parent GAC, dosing EQA first at a pH of 12, preparation time of 48 h, preparation temperature of 50 °C, and mole ratio of EQA/oxygen groups of 2.5. The most favorable cationic GAC that had the QUAB360 pre-anchored exhibited the highest perchlorate adsorption capacity of 24.7 mg/g, and presented the longest bed volumes (3000 BV) to 2 ppb breakthrough during rapid small scale column tests (RSSCTs), which was 150 times higher than that for the pristine Gran C. This was attributed to its higher nitrogen amount (1.53 At%) and higher positive surface charge (0.036 mmol/g) at pH 7.5. Also, there was no leaching of the quaternary ammonium detected in the effluent of the RSSCTs, indicating there was no secondary pollution occurring during the perchlorate removal process. Overall, this study provides an effective and environmental-friendly technology for improving GAC perchlorate adsorption capacity for groundwater treatment.


Asunto(s)
Carbón Orgánico/química , Agua Subterránea/química , Percloratos/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Cationes , Compuestos Epoxi/química , Compuestos de Amonio Cuaternario/química , Propiedades de Superficie
15.
Water Res ; 41(9): 1851-8, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17367839

RESUMEN

Iron-impregnated activated carbons have been found to be very effective in arsenic removal. Oxyanionic arsenic species such as arsenate and arsenite adsorb at the iron oxyhydroxide surface by forming complexes with the surface sites. Our goal has been to load as much iron within the carbon pores as possible while also rendering as much of the iron to be available for sorbing arsenic. Surface oxidation of carbon by HNO3/H2SO4 or by HNO3/KMnO4 increased the amount of iron that could be loaded to 7.6-8.0%; arsenic stayed below 10 ppb until 12,000 bed volumes during rapid small-scale tests (RSSCTs) using Rutland, MA groundwater (40-60 ppb arsenic, and pH of 7.6-8.0). Boehm titrations showed that surface oxidation greatly increased the concentration of carboxylic and phenolic surface groups. Iron impregnation by precipitation or iron salt evaporation was also evaluated. Iron content was increased to 9-17% with internal iron-loading, and to 33.6% with both internal and external iron loading. These iron-tailored carbons reached 25,000-34,000 bed volumes to 10 ppb arsenic breakthrough during RSSCTs. With the 33.6% iron loading, some iron peeled off.


Asunto(s)
Arsénico/aislamiento & purificación , Carbón Orgánico/química , Hierro/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Cinética , Propiedades de Superficie
16.
Chemosphere ; 184: 429-437, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28618275

RESUMEN

Polypyrrole modified activated carbon was used to remove sulfate from acid mine drainage water. The polypyrrole modified activated carbon created positively charged functionality that offered elevated sorption capacity for sulfate. The effects of the activated carbon type, approach of polymerization, preparation temperature, solvent, and concentration of oxidant solution over the sulfate adsorption capacity were studied at an array of initial sulfate concentrations. A hardwood based activated carbon was the more favorable activated carbon template, and this offered better sulfate removal than when using bituminous based activated carbon or oak wood activated carbon as the template. The hardwood-based activated carbon modified with polypyrrole removed 44.7 mg/g sulfate, and this was five times higher than for the pristine hardwood-based activated carbon. Various protocols for depositing the polypyrrole onto the activated carbon were investigated. When ferric chloride was used as an oxidant, the deposition protocol that achieved the most N+ atomic percent (3.35%) while also maintaining the least oxygen atomic percent (6.22%) offered the most favorable sulfate removal. For the rapid small scale column tests, when processing the AMD water, hardwood-based activated carbon modified with poly pyrrole exhibited 33 bed volume compared to the 5 bed volume of pristine activated carbons.


Asunto(s)
Carbón Orgánico/química , Polímeros/química , Pirroles/química , Sulfatos/aislamiento & purificación , Adsorción , Minería , Contaminantes Químicos del Agua/aislamiento & purificación , Madera
17.
Water Res ; 103: 233-244, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27470293

RESUMEN

Hypersaline hydrofracturing brines host very high salt concentrations, as high as 120,000-330,000 mg/L total dissolved solids (TDS), corresponding to ionic strengths of 2.1-5.7 mol/kg. This is 4-10 times higher than for ocean water. At such high ionic strengths, the conventional equations for computing activity coefficients no longer apply; and the complex ion-interactive Pitzer model must be invoked. The authors herein have used the Pitzer-based PHREEQC computer program to compute the appropriate activity coefficients when forming such precipitates as BaSO4, CaSO4, MgSO4, SrSO4, CaCO3, SrCO3, and BaCO3 in hydrofracturing waters. The divalent cation activity coefficients (γM) were computed in the 0.1 to 0.2 range at 2.1 mol/kg ionic strength, then by 5.7 mol/kg ionic strength, they rose to 0.2 for Ba(2+), 0.6 for Sr(2+), 0.8 for Ca(2+), and 2.1 for Mg(2+). Concurrently, the [Formula: see text] was 0.02-0.03; and [Formula: see text] was 0.01-0.02. While employing these Pitzer-derived activity coefficients, the authors then used the PHREEQC model to characterize precipitation of several of these sulfates and carbonates from actual hydrofracturing waters. Modeled precipitation matched quite well with actual laboratory experiments and full-scale operations. Also, the authors found that SrSO4 effectively co-precipitated radium from hydrofracturing brines, as discerned when monitoring (228)Ra and other beta-emitting species via liquid scintillation; and also when monitoring gamma emissions from (226)Ra.


Asunto(s)
Fracking Hidráulico , Modelos Químicos , Precipitación Química , Concentración Osmolar , Sulfatos , Contaminantes Radiactivos del Agua
18.
Water Res ; 39(16): 4020-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16129470

RESUMEN

In rapid small-scale column tests, cationic surfactant-tailored activated carbons (ACs) effectively removed perchlorate to below detection levels for up to 30 times longer than virgin AC. By pre-loading bituminous AC with dicocodimethylammonium chloride, tallowtrimethylammonium chloride, cetyltrimethylammonium chloride, or cetylpyridinium chloride, 75 ppb perchlorate was removed for 27,000-35,000 bed volumes before the effluent perchlorate rose above 1 ppb. These tests employed a natural groundwater that also contained 30 mg/L sulfate, 26 mg/L nitrate (as NO3-), and other ions. By the time of 25 ppb perchlorate breakthrough, 7.3-10.1% of quaternary ammonium sites had perchlorate associated with them. Although some of the surfactants leached out of the tailored carbon beds (0.6-21.2% of the amount loaded), the leached surfactant could be removed to below detectable limits with a virgin AC polishing bed that chased the tailored bed.


Asunto(s)
Percloratos/aislamiento & purificación , Contaminantes del Suelo/aislamiento & purificación , Contaminantes del Agua/aislamiento & purificación , Adsorción , Carbono/química , Cationes , Tensoactivos/química
19.
Water Res ; 39(19): 4683-92, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16246394

RESUMEN

Perchlorate contaminates vast amounts of groundwater throughout the United States which could potentially be used as potable water. Activated carbon pre-loaded with cetyltrimethylammonium chloride has been shown in this research to be an effective adsorbent for removing perchlorate from three low conductivity (50-66 microS/cm) groundwaters containing perchlorate (ClO(4)(-)) concentrations of 0.85, 1.0, and 5.6 parts per billion (ppb), respectively. In rapid small-scale column tests (RSSCTs), the virgin granular activated carbon (GAC) (used as a control) treated between 20,000 and 40,000 bed volumes (BV) of water. In contrast, the activated carbon that was pre-loaded with CTAC processed 170,000-270,000 BV before perchlorate was detected above 0.25 ppb in the effluent. Though this pre-loading significantly increased the capacity for perchlorate, it also diminished the GAC's capacity to remove organics. The groundwater containing 1 ppb ClO(4)(-) also contained the nitro-organics HMX (0.6 ppb) and RDX (5.5-6.6 ppb). RDX was detected in the effluent from the CTAC-pre-loaded bed after only 8000 BV had been processed whereas 308,000 BV could be processed through the virgin bed before RDX was detected. Likewise, HMX breakthrough was observed after 116,000 BV in the CTAC-pre-loaded bed while the virgin RSSCT exhibited no breakthrough of HMX during a test that was operated for 309,000 BV. However, by combining a CTAC-pre-loaded bed followed by a virgin GAC bed in series, both perchlorate and RDX could be removed for the same length of time.


Asunto(s)
Compuestos de Cetrimonio/química , Carbón Orgánico/química , Nitrocompuestos/aislamiento & purificación , Compuestos Orgánicos/aislamiento & purificación , Percloratos/aislamiento & purificación , Adsorción , Cetrimonio , Contaminantes del Suelo/aislamiento & purificación , Temperatura , Contaminantes del Agua/aislamiento & purificación , Purificación del Agua/métodos , Abastecimiento de Agua
20.
Water Res ; 68: 784-92, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25462782

RESUMEN

The authors have developed a kinetic dye test protocol that aims to predict the competitive adsorption of 2-methylisoborneol (MIB) to granular activated carbons (GACs). The kinetic dye test takes about two hours to perform, and produces a quantitative result, fitted to a model to yield an Intraparticle Diffusion Constant (IDC) during the earlier times of dye sorption. The dye xylenol orange was probed into six coconut-based GACs and five bituminous-based GACs that hosted varied pore distributions. Correlations between xylenol orange IDCs and breakthrough of MIB at 4 ppt in rapid small-scale column tests (RSSCTs) were found with R²s of 0.85 and 0.95 for coconut carbons that processed waters with total organic carbon (TOCs) of 1.9 and 2.2 ppm, respectively, and with an R² of 0.94 for bituminous carbons that processed waters with a TOC of 2.5 ppm. The author sought to study the influence of the pore sizes, which provide the adsorption sites and the diffusion conduits that are necessary for the removal of those compounds. For coconut carbons, a linear correlation was established between the xylenol orange IDCs and the volume of pores in the range of 23.4-31.8 Å widths (R² = 0.98). For bituminous carbons, best correlation was to pores ranging from 74 to 93 Å widths (R² = 0.94). The differences in adsorption between coconut carbons and bituminous carbons have been attributed to the inherently dissimilar graphene layering resulting from the parent materials and the activation processes. When fluorescein dye was employed in the kinetic dye tests, the correlations to RSSCT-MIB performance were not as high as when xylenol orange was used. Intriguingly, it was the same pore size ranges that exhibited the strongest correlation for MIB RSSCT's, xylenol orange kinetics, and fluoroscein kinetics. When methylene blue dye was used, sorption occurred so rapidly as to be out of the scope of the IDC model.


Asunto(s)
Canfanos/química , Carbón Orgánico/química , Fenoles/química , Sulfóxidos/química , Contaminantes Químicos del Agua/química , Adsorción , Carbono/química , Carbón Mineral , Cocos/química , Difusión , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Modelos Teóricos , Tamaño de la Partícula , Porosidad , Reproducibilidad de los Resultados , Factores de Tiempo , Purificación del Agua/instrumentación , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA