Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 11: 1336588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357641

RESUMEN

Big data and artificial intelligence are key elements in the medical field as they are expected to improve accuracy and efficiency in diagnosis and treatment, particularly in identifying biomedically relevant patterns, facilitating progress towards individually tailored preventative and therapeutic interventions. These applications belong to current research practice that is data-intensive. While the combination of imaging, pathological, genomic, and clinical data is needed to train algorithms to realize the full potential of these technologies, biobanks often serve as crucial infrastructures for data-sharing and data flows. In this paper, we argue that the 'data turn' in the life sciences has increasingly re-structured major infrastructures, which often were created for biological samples and associated data, as predominantly data infrastructures. These have evolved and diversified over time in terms of tackling relevant issues such as harmonization and standardization, but also consent practices and risk assessment. In line with the datafication, an increased use of AI-based technologies marks the current developments at the forefront of the big data research in life science and medicine that engender new issues and concerns along with opportunities. At a time when secure health data environments, such as European Health Data Space, are in the making, we argue that such meta-infrastructures can benefit both from the experience and evolution of biobanking, but also the current state of affairs in AI in medicine, regarding good governance, the social aspects and practices, as well as critical thinking about data practices, which can contribute to trustworthiness of such meta-infrastructures.

2.
Front Genet ; 14: 1098439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816027

RESUMEN

Researchers aim to develop polygenic risk scores as a tool to prevent and more effectively treat serious diseases, disorders and conditions such as breast cancer, type 2 diabetes mellitus and coronary heart disease. Recently, machine learning techniques, in particular deep neural networks, have been increasingly developed to create polygenic risk scores using electronic health records as well as genomic and other health data. While the use of artificial intelligence for polygenic risk scores may enable greater accuracy, performance and prediction, it also presents a range of increasingly complex ethical challenges. The ethical and social issues of many polygenic risk score applications in medicine have been widely discussed. However, in the literature and in practice, the ethical implications of their confluence with the use of artificial intelligence have not yet been sufficiently considered. Based on a comprehensive review of the existing literature, we argue that this stands in need of urgent consideration for research and subsequent translation into the clinical setting. Considering the many ethical layers involved, we will first give a brief overview of the development of artificial intelligence-driven polygenic risk scores, associated ethical and social implications, challenges in artificial intelligence ethics, and finally, explore potential complexities of polygenic risk scores driven by artificial intelligence. We point out emerging complexity regarding fairness, challenges in building trust, explaining and understanding artificial intelligence and polygenic risk scores as well as regulatory uncertainties and further challenges. We strongly advocate taking a proactive approach to embedding ethics in research and implementation processes for polygenic risk scores driven by artificial intelligence.

3.
Front Big Data ; 5: 850383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910490

RESUMEN

Artificial intelligence (AI) is being applied in medicine to improve healthcare and advance health equity. The application of AI-based technologies in radiology is expected to improve diagnostic performance by increasing accuracy and simplifying personalized decision-making. While this technology has the potential to improve health services, many ethical and societal implications need to be carefully considered to avoid harmful consequences for individuals and groups, especially for the most vulnerable populations. Therefore, several questions are raised, including (1) what types of ethical issues are raised by the use of AI in medicine and biomedical research, and (2) how are these issues being tackled in radiology, especially in the case of breast cancer? To answer these questions, a systematic review of the academic literature was conducted. Searches were performed in five electronic databases to identify peer-reviewed articles published since 2017 on the topic of the ethics of AI in radiology. The review results show that the discourse has mainly addressed expectations and challenges associated with medical AI, and in particular bias and black box issues, and that various guiding principles have been suggested to ensure ethical AI. We found that several ethical and societal implications of AI use remain underexplored, and more attention needs to be paid to addressing potential discriminatory effects and injustices. We conclude with a critical reflection on these issues and the identified gaps in the discourse from a philosophical and STS perspective, underlining the need to integrate a social science perspective in AI developments in radiology in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA