Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561566

RESUMEN

Mitochondrial genomes (mitogenomes) in higher plants can induce cytoplasmic male sterility and be somehow involved in nuclear-cytoplasmic interactions affecting plant growth and agronomic performance. They are larger and more complex than in other eukaryotes, due to their recombinogenic nature. For most plants, the mitochondrial DNA (mtDNA) can be represented as a single circular chromosome, the so-called master molecule, which includes repeated sequences that recombine frequently, generating sub-genomic molecules in various proportions. Based on the relevance of the potato crop worldwide, herewith we report the complete mtDNA sequence of two S. tuberosum cultivars, namely Cicero and Désirée, and a comprehensive study of its expression, based on high-coverage RNA sequencing data. We found that the potato mitogenome has a multi-partite architecture, divided in at least three independent molecules that according to our data should behave as autonomous chromosomes. Inter-cultivar variability was null, while comparative analyses with other species of the Solanaceae family allowed the investigation of the evolutionary history of their mitogenomes. The RNA-seq data revealed peculiarities in transcriptional and post-transcriptional processing of mRNAs. These included co-transcription of genes with open reading frames that are probably expressed, methylation of an rRNA at a position that should impact translation efficiency and extensive RNA editing, with a high proportion of partial editing implying frequent mis-targeting by the editing machinery.


Asunto(s)
Perfilación de la Expresión Génica , Genoma Mitocondrial , Genómica , Solanum tuberosum/genética , Secuenciación Completa del Genoma , Secuencia de Aminoácidos , Genómica/métodos , Sistemas de Lectura Abierta , Filogenia , Edición de ARN
2.
Cell Physiol Biochem ; 31(1): 123-42, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23363700

RESUMEN

BACKGROUND: Cell migration is essential in physiological and pathological processes, such as wound healing and metastasis formation. Ras involvement in these processes has been extensively demonstrated. This work attempts to characterize Ras regulation of the phenomena determining directional cell migration by separately analyzing the role of its principal effector pathways, MAPK and PI3K. METHODS: NIH3T3 and NIHRasV12 fibroblasts were followed in wound healing assays to study, in time and under a directional stimulus, cell migration both under standard conditions and in presence of MAPK and PI3K inhibitors. Several parameters, descriptive of specific aspects of cell motion, were evaluated by coupling dynamic microscopy with quantitative and statistical methods. Quantitative Western Blots coupled with immunofluorescence stainings, were used to evaluate ERK activation. RESULTS: Constitutive RasV12 activation confers to NIH3T3 the ability to close the wound faster. Neither increased cell proliferation nor higher speed explains the accelerated healing, but the increased directional migration drives the wound closure. Inhibition of ERK activation, which occurs immediately after wound, greatly blocks the directional migration, while inhibition of PI3K pathway reduces cell speed but does not prevent wound closure. CONCLUSION: Ras is greatly involved in determining and regulating directionality, ERK is its key effector for starting, driving and regulating directional movement.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Cromonas/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Fibroblastos/metabolismo , Flavonoides/farmacología , Ratones , Morfolinas/farmacología , Células 3T3 NIH , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal/efectos de los fármacos , Imagen de Lapso de Tiempo , Proteínas ras/genética
3.
Plants (Basel) ; 9(11)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114641

RESUMEN

In various crops, genetic bottlenecks occurring through domestication can limit crop resilience to biotic and abiotic stresses. In the present study, we investigated nucleotide diversity in tomato chloroplast genome through sequencing seven plastomes of cultivated accessions from the Campania region (Southern Italy) and two wild species among the closest (Solanum pimpinellifolium) and most distantly related (S. neorickii) species to cultivated tomatoes. Comparative analyses among the chloroplast genomes sequenced in this work and those available in GenBank allowed evaluating the variability of plastomes and defining phylogenetic relationships. A dramatic reduction in genetic diversity was detected in cultivated tomatoes, nonetheless, a few de novo mutations, which still differentiated the cultivated tomatoes from the closest wild relative S. pimpinellifolium, were detected and are potentially utilizable as diagnostic markers. Phylogenetic analyses confirmed that S. pimpinellifolium is the closest ancestor of all cultivated tomatoes. Local accessions all clustered together and were strictly related with other cultivated tomatoes (S. lycopersicum group). Noteworthy, S. lycopersicum var. cerasiforme resulted in a mixture of both cultivated and wild tomato genotypes since one of the two analyzed accessions clustered with cultivated tomato, whereas the other with S. pimpinellifolium. Overall, our results revealed a very reduced cytoplasmic variability in cultivated tomatoes and suggest the occurrence of a cytoplasmic bottleneck during their domestication.

4.
BMC Bioinformatics ; 10 Suppl 12: S12, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19828072

RESUMEN

BACKGROUND: Cell motility plays a central role in development, wound-healing and tumour invasion. Cultures of eukaryotic cells are a complex system where most cells move according to 'random' patterns, but may also be induced to a more coordinate migration by means of specific stimuli, such as the presence of chemical attractants or the introduction of a mechanical stimulus. Various tools have been developed that work by keeping track of the paths followed by specific objects and by performing statistical analysis on the recorded path data. The available tools include desktop applications or macros running within a commercial package, which address specific aspects of the process. RESULTS: An online application, MotoCell, was developed to evaluate the motility of cell populations maintained in various experimental conditions. Statistical analysis of cell behaviour consists of the evaluation of descriptive parameters such as average speed and angle, directional persistence, path vector length, calculated for the whole population as well as for each cell and for each step of the migration; in this way the behaviour of a whole cell population may be assessed as a whole or as a sum of individual entities. The directional movement of objects may be studied by eliminating the modulo effect in circular statistics analysis, able to evaluate linear dispersion coefficient (R) and angular dispersion (S) values together with average angles. A case study is provided where the system is used to characterize motility of RasV12 transformed NIH3T3 fibroblasts. CONCLUSION: Here we describe a comprehensive tool which takes care of all steps in cell motility analysis, including interactive cell tracking, path editing and statistical analysis of cell movement, all within a freely available online service. Although based on a standard web interface, the program is very fast and interactive and is immediately available to a large number of users, while exploiting the web approach in a very effective way. The ability to evaluate the behaviour of single cells allows to draw the attention on specific correlations, such as linearity of movement and deviation from the expected direction. In addition to population statistics, the analysis of single cells allows to group the cells into subpopulations, or even to evaluate the behaviour of each cell with respect to a variable reference, such as the direction of a wound or the position of the closest cell.


Asunto(s)
Movimiento Celular , Células/citología , Modelos Teóricos , Animales , Recuento de Células , Células/metabolismo , Fibroblastos/metabolismo , Ratones , Células 3T3 NIH
5.
Source Code Biol Med ; 14: 4, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31320922

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) technologies have revolutionarily reshaped the landscape of '-omics' research areas. They produce a plethora of information requiring specific knowledge in sample preparation, analysis and characterization. Additionally, expertise and competencies are required when using bioinformatics tools and methods for efficient analysis, interpretation, and visualization of data. These skills are rarely covered in a single laboratory. More often the samples are isolated and purified in a first laboratory, sequencing is performed by a private company or a specialized lab, while the produced data are analyzed by a third group of researchers. In this scenario, the support, the communication, and the information sharing among researchers represent the key points to build a common knowledge and to meet the project objectives. RESULTS: We present ElGalaxy, a system designed and developed to support collaboration and information sharing among researchers. Specifically, we integrated collaborative functionalities within an application usually adopted by Life Science researchers. ElGalaxy, therefore, is the result of the integration of Galaxy, i.e., a Workflow Management System, with Elgg, i.e., a Social Network Engine. CONCLUSIONS: ElGalaxy enables scientists, that work on the same experiment, to collaborate and share information, to discuss about methods, and to evaluate results of the individual steps, as well as of entire activities, performed during their experiments. ElGalaxy also allows a greater team awareness, especially when experiments are carried out with researchers which belong to different and distributed research centers.

6.
Genes (Basel) ; 9(10)2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30336638

RESUMEN

Members of the genus Capsicum are of great economic importance, including both wild forms and cultivars of peppers and chilies. The high number of potentially informative characteristics that can be identified through next-generation sequencing technologies gave a huge boost to evolutionary and comparative genomic research in higher plants. Here, we determined the complete nucleotide sequences of the plastomes of eight Capsicum species (eleven genotypes), representing the three main taxonomic groups in the genus and estimated molecular diversity. Comparative analyses highlighted a wide spectrum of variation, ranging from point mutations to small/medium size insertions/deletions (InDels), with accD, ndhB, rpl20, ycf1, and ycf2 being the most variable genes. The global pattern of sequence variation is consistent with the phylogenetic signal. Maximum-likelihood tree estimation revealed that Capsicum chacoense is sister to the baccatum complex. Divergence and positive selection analyses unveiled that protein-coding genes were generally well conserved, but we identified 25 positive signatures distributed in six genes involved in different essential plastid functions, suggesting positive selection during evolution of Capsicum plastomes. Finally, the identified sequence variation allowed us to develop simple PCR-based markers useful in future work to discriminate species belonging to different Capsicum complexes.

7.
Sci Rep ; 7(1): 5616, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28717173

RESUMEN

Tomato (Solanum lycopersicum L.) plants are characterized by having a variety of fruit colours that reflect the composition and accumulation of diverse carotenoids in the berries. Carotenoids are extensively studied for their health-promoting effects and this explains the great attention these pigments received by breeders and researchers worldwide. In this work we applied Agilent's SureSelect liquid-phase sequence capture and Illumina targeted re-sequencing of 34 tomato genes belonging to the methylerythritol phosphate (MEP) carotenoid pathway on a panel of 48 genotypes which differ for carotenoid content calculated as the sum of ß-carotene, cis- and trans-lycopene. We targeted 230 kb of genomic regions including all exons and regulatory regions and observed ~40% of on-target capture. We found ample genetic variation among all the genotypes under study and generated an extensive catalog of SNPs/InDels located in both genic and regulatory regions. SNPs/InDels were also classified based on genomic location and putative biological effect. With our work we contributed to the identification of allelic variations possibly underpinning a key agronomic trait in tomato. Results from this study can be exploited for the promotion of novel studies on tomato bio-fortification as well as of breeding programs related to carotenoid accumulation in fruits.


Asunto(s)
Carotenoides/biosíntesis , Variación Genética , Análisis de Secuencia de ADN/métodos , Solanum lycopersicum/genética , Exones , Genotipo , Mutación INDEL , Redes y Vías Metabólicas , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Elementos Reguladores de la Transcripción
8.
BMC Res Notes ; 8: 525, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26428628

RESUMEN

BACKGROUND: With the advent of high-throughput sequencing technologies large-scale identification of microsatellites became affordable and was especially directed to non-model species. By contrast, few efforts have been published toward the automatic identification of polymorphic microsatellites by exploiting sequence redundancy. Few tools for genotyping microsatellite repeats have been implemented so far that are able to manage huge amount of sequence data and handle the SAM/BAM file format. Most of them have been developed for and tested on human or model organisms with high quality reference genomes. RESULTS: In this note we describe polymorphic SSR retrieval (PSR), a read counter and simple sequence repeat (SSR) length polymorphism detection tool. It is written in Perl and was developed to identify length polymorphisms in perfect microsatellites exploiting next generation sequencing (NGS) data. PSR has been developed bearing in mind plant non-model species for which de novo transcriptome assembly is generally the first sequence resource available to be used for SSR-mining. PSR is divided into two modules: the read-counting module (PSR_read_retrieval) identifies all the reads that cover the full-length of perfect microsatellites; the comparative module (PSR_poly_finder) detects both heterozygous and homozygous alleles at each microsatellite locus across all genotypes under investigation. Two threshold values to call a length polymorphism and reduce the number of false positives can be defined by the user: the minimum number of reads overlapping the repetitive stretch and the minimum read depth. The first parameter determines if the microsatellite-containing sequence must be processed or not, while the second one is decisive for the identification of minor alleles. PSR was tested on two different case studies. The first study aims at the identification of polymorphic SSRs in a set of de novo assembled transcripts defined by RNA-sequencing of two different plant genotypes. The second research activity aims to investigate sequence variations within a collection of newly sequenced chloroplast genomes. In both the cases PSR results are in agreement with those obtained by capillary gel separation. CONCLUSION: PSR has been specifically developed from the need to automate the gene-based and genome-wide identification of polymorphic microsatellites from NGS data. It overcomes the limits related to the existing and time-consuming efforts based on tools developed in the pre-NGS era.


Asunto(s)
Repeticiones de Microsatélite/genética , Polimorfismo Genético , Programas Informáticos , Secuencia de Bases , ADN de Cloroplastos/genética , Electroforesis Capilar , Sitios Genéticos , Genotipo , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estándares de Referencia , Flujo de Trabajo
9.
Oncotarget ; 5(20): 9901-10, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25313140

RESUMEN

PIWI-interacting small non-coding RNAs (piRNAs) are genetic and epigenetic regulatory factors in germline cells, where they maintain genome stability, are involved in RNA silencing and regulate gene expression. We found that the piRNA biogenesis and effector pathway are present in human breast cancer (BC) cells and, analyzing smallRNA-Seq data generated from BC cell lines and tumor biopsies, we identified >100 BC piRNAs, including some very abundant and/or differentially expressed in mammary epithelial compared to BC cells, where this was influenced by estrogen or estrogen receptor ß, and in cancer respect to normal breast tissues. A search for mRNAs targeted by the BC piRNome revealed that eight piRNAs showing a specific expression pattern in breast tumors target key cancer cell pathways. Evidence of an active piRNA pathway in BC suggests that these small non-coding RNAs do exert transcriptional and post-transcriptional gene regulatory actions also in cancer cells.


Asunto(s)
Proteínas Argonautas/metabolismo , Neoplasias de la Mama/genética , ARN Interferente Pequeño/metabolismo , ARN Pequeño no Traducido/biosíntesis , Proteínas Argonautas/genética , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Receptor beta de Estrógeno/metabolismo , Estrógenos/deficiencia , Femenino , Humanos , Células MCF-7 , Datos de Secuencia Molecular , ARN Interferente Pequeño/genética , ARN Pequeño no Traducido/genética , Análisis de Secuencia de ARN , Transfección
10.
Horm Cancer ; 3(3): 65-78, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22274890

RESUMEN

Oestrogen receptor alpha (ERα) is a ligand-dependent transcription factor that mediates oestrogen effects in hormone-responsive cells. Following oestrogenic activation, ERα directly regulates the transcription of target genes via DNA binding. MicroRNAs (miRNAs) represent a class of small noncoding RNAs that function as negative regulators of protein-coding gene expression. They are found aberrantly expressed or mutated in cancer, suggesting their crucial role as either oncogenes or tumour suppressor genes. Here, we analysed changes in miRNA expression in response to oestrogen in hormone-responsive breast cancer MCF-7 and ZR-75.1 cells by microarray-mediated expression profiling. This led to the identification of 172 miRNAs up- or down-regulated by ERα in response to 17ß-oestradiol, of which 52 are similarly regulated by the hormone in the two cell models investigated. To identify mechanisms by which ERα exerts its effects on oestrogen-responsive miRNA genes, the oestrogen-dependent miRNA expression profiles were integrated with global in vivo ERα binding site mapping in the genome by ChIP-Seq. In addition, data from miRNA and messenger RNA (mRNA) expression profiles obtained under identical experimental conditions were compared to identify relevant miRNA target transcripts. Results show that miRNAs modulated by ERα represent a novel genomic pathway to impact oestrogen-dependent processes that affect hormone-responsive breast cancer cell behaviour. MiRNome analysis in tumour tissues from breast cancer patients confirmed a strong association between expression of these small RNAs and clinical outcome of the disease, although this appears to involve only marginally the oestrogen-regulated miRNAs identified in this study.


Asunto(s)
Neoplasias de la Mama/genética , Estradiol/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Adulto , Anciano , Sitios de Unión/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Análisis por Conglomerados , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Elementos de Respuesta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA