RESUMEN
BACKGROUND: Escherichia coli K-12 strains contain DNA cytosine methyltransferase (Dcm), which generates 5-methylcytosine at 5'CCWGG3' sites. Although the role of 5-methylcytosine in eukaryotic gene expression is relatively well described, the role of 5-methylcytosine in bacterial gene expression is largely unknown. RESULTS: To identify genes that are controlled by 5-methylcytosine in E. coli, we compared the transcriptomes of cells grown in the absence and presence of the DNA methylation inhibitor 5-azacytidine. We observed expression changes for 63 genes. The majority of the gene expression changes occurred at early stationary phase and were up-regulations. To identify gene expression changes due to a loss of DNA methylation, we compared the expression of selected genes in a wild-type and dcm knockout strain via reverse transcription quantitative PCR. CONCLUSIONS: Our data indicate that 5-azacytidine can influence gene expression by at least two distinct mechanisms: DNA methylation loss and a mechanism that is independent of DNA methylation loss. In addition, we have identified new targets of 5-methylcytosine-mediated regulation of gene expression. In summary, our data indicate that 5-azacytidine impacts the composition of the bacterial transcriptome, and the primary effect is increased gene expression at early stationary phase.