Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(9): 105116, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37524130

RESUMEN

Xylans are polysaccharides composed of xylose and include ß1,4-xylan, ß1,3-xylan, and ß1,3/1,4-mixed-linkage xylan (MLX). MLX is widely present in marine red algae and constitutes a significant organic carbon in the ocean. Xylanases are hydrolase enzymes that play an important role in xylan degradation. While a variety of ß1,4-xylanases and ß1,3-xylanases involved in the degradation of ß1,4-xylan and ß1,3-xylan have been reported, no specific enzyme has yet been identified that degrades MLX. Herein, we report the characterization of a new MLX-specific xylanase from the marine bacterium Polaribacter sp. Q13 which utilizes MLX for growth. The bacterium secretes xylanases to degrade MLX, among which is Xyn26A, an MLX-specific xylanase that shows low sequence similarities (<27%) to ß1,3-xylanases in the glycoside hydrolase family 26 (GH26). We show that Xyn26A attacks MLX precisely at ß1,4-linkages, following a ß1,3-linkage toward the reducing end. We confirm that Xyn26A and its homologs have the same specificity and mode of action on MLX, and thus represent a new xylanase group which we term as MLXases. We further solved the structure of a representative MLXase, AlXyn26A. Structural and biochemical analyses revealed that the specificity of MLXases depends critically on a precisely positioned ß1,3-linkage at the -2/-1 subsite. Compared to the GH26 ß1,3-xylanases, we found MLXases have evolved a tunnel-shaped cavity that is fine-tuned to specifically recognize and hydrolyze MLX. Overall, this study offers a foremost insight into MLXases, shedding light on the biochemical mechanism of bacterial degradation of MLX.

2.
J Biol Chem ; 299(8): 104958, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380083

RESUMEN

Nitrogen (N) is an essential element for microbial growth and metabolism. The growth and reproduction of microorganisms in more than 75% of areas of the ocean are limited by N. Prochlorococcus is numerically the most abundant photosynthetic organism on the planet. Urea is an important and efficient N source for Prochlorococcus. However, how Prochlorococcus recognizes and absorbs urea still remains unclear. Prochlorococcus marinus MIT 9313, a typical Cyanobacteria, contains an ABC-type transporter, UrtABCDE, which may account for the transport of urea. Here, we heterologously expressed and purified UrtA, the substrate-binding protein of UrtABCDE, detected its binding affinity toward urea, and further determined the crystal structure of the UrtA/urea complex. Molecular dynamics simulations indicated that UrtA can alternate between "open" and "closed" states for urea binding. Based on structural and biochemical analyses, the molecular mechanism for urea recognition and binding was proposed. When a urea molecule is bound, UrtA undergoes a state change from open to closed surrounding the urea molecule, and the urea molecule is further stabilized by the hydrogen bonds supported by the conserved residues around it. Moreover, bioinformatics analysis showed that ABC-type urea transporters are widespread in bacteria and probably share similar urea recognition and binding mechanisms as UrtA from P. marinus MIT 9313. Our study provides a better understanding of urea absorption and utilization in marine bacteria.


Asunto(s)
Prochlorococcus , Agua de Mar , Transportadoras de Casetes de Unión a ATP/metabolismo , Prochlorococcus/metabolismo , Urea/metabolismo , Agua de Mar/microbiología
3.
Brain Behav Immun ; 119: 767-780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677625

RESUMEN

The co-occurrence and familial clustering of neurodevelopmental disorders and immune disorders suggest shared genetic risk factors. Based on genome-wide association summary statistics from five neurodevelopmental disorders and four immune disorders, we conducted genome-wide, local genetic correlation and polygenic overlap analysis. We further performed a cross-trait GWAS meta-analysis. Pleotropic loci shared between the two categories of diseases were mapped to candidate genes using multiple algorithms and approaches. Significant genetic correlations were observed between neurodevelopmental disorders and immune disorders, including both positive and negative correlations. Neurodevelopmental disorders exhibited higher polygenicity compared to immune disorders. Around 50%-90% of genetic variants of the immune disorders were shared with neurodevelopmental disorders. The cross-trait meta-analysis revealed 154 genome-wide significant loci, including 8 novel pleiotropic loci. Significant associations were observed for 30 loci with both types of diseases. Pathway analysis on the candidate genes at these loci revealed common pathways shared by the two types of diseases, including neural signaling, inflammatory response, and PI3K-Akt signaling pathway. In addition, 26 of the 30 lead SNPs were associated with blood cell traits. Neurodevelopmental disorders exhibit complex polygenic architecture, with a subset of individuals being at a heightened genetic risk for both neurodevelopmental and immune disorders. The identification of pleiotropic loci has important implications for exploring opportunities for drug repurposing, enabling more accurate patient stratification, and advancing genomics-informed precision in the medical field of neurodevelopmental disorders.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades del Sistema Inmune , Herencia Multifactorial , Trastornos del Neurodesarrollo , Polimorfismo de Nucleótido Simple , Humanos , Trastornos del Neurodesarrollo/genética , Enfermedades del Sistema Inmune/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Herencia Multifactorial/genética
4.
Dig Dis Sci ; 69(5): 1852-1862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514499

RESUMEN

BACKGROUND: Early rebleeding is a significant complication of endoscopic treatment for esophagogastric variceal hemorrhage (EGVH). However, a reliable predictive model is currently lacking. AIMS: To identify risk factors for rebleeding within 6 weeks and establish a nomogram for predicting early rebleeding after endoscopic treatment of EVGH. METHODS: Demographic information, comorbidities, preoperative evaluation, endoscopic features, and laboratory tests were collected from 119 patients who were first endoscopic treatment for EGVH. Independent risk factors for early rebleeding were determined through least absolute shrinkage and selection operator logistic regression. The discrimination, calibration, and clinical utility of the nomogram were assessed and compared with the model for end-stage liver disease (MELD), Child-Pugh, and albumin-bilirubin (ALBI) scores using receiver-operating characteristic (ROC) curves, calibration plots, and decision curve analyses (DCA). RESULTS: Early rebleeding occurred in 39 patients (32.8%) within 6 weeks after endoscopic treatment. Independent early rebleeding factors included gastric variceal hemorrhage (GVH), concomitant hepatocellular carcinoma (HCC), international normalized ratio (INR), and creatinine. The nomogram demonstrated exceptional calibration and discrimination capability. The area under the curve for the nomogram was 0.758 (95% CI 0.668-0.848), and it was validated at 0.71 through cross-validation and bootstrapping validation. The DCA and ROC curves demonstrated that the nomogram outperformed the MELD, Child-Pugh, and ALBI scores. CONCLUSIONS: Compared with existing prediction scores, the nomogram demonstrated superior discrimination, calibration, and clinical applicability for predicting rebleeding in patients with EGVH after endoscopic treatment. Therefore, it may assist clinicians in the early implementation of aggressive treatment and follow-up.


Asunto(s)
Várices Esofágicas y Gástricas , Hemorragia Gastrointestinal , Nomogramas , Recurrencia , Humanos , Várices Esofágicas y Gástricas/cirugía , Várices Esofágicas y Gástricas/diagnóstico , Várices Esofágicas y Gástricas/etiología , Masculino , Femenino , Persona de Mediana Edad , Hemorragia Gastrointestinal/etiología , Hemorragia Gastrointestinal/cirugía , Hemorragia Gastrointestinal/diagnóstico , Anciano , Factores de Riesgo , Estudios Retrospectivos , Curva ROC , Valor Predictivo de las Pruebas , Adulto
5.
Sensors (Basel) ; 24(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38793984

RESUMEN

Fine-grained representation is fundamental to species classification based on deep learning, and in this context, cross-modal contrastive learning is an effective method. The diversity of species coupled with the inherent contextual ambiguity of natural language poses a primary challenge in the cross-modal representation alignment of conservation area image data. Integrating cross-modal retrieval tasks with generation tasks contributes to cross-modal representation alignment based on contextual understanding. However, during the contrastive learning process, apart from learning the differences in the data itself, a pair of encoders inevitably learns the differences caused by encoder fluctuations. The latter leads to convergence shortcuts, resulting in poor representation quality and an inaccurate reflection of the similarity relationships between samples in the original dataset within the shared space of features. To achieve fine-grained cross-modal representation alignment, we first propose a residual attention network to enhance consistency during momentum updates in cross-modal encoders. Building upon this, we propose momentum encoding from a multi-task perspective as a bridge for cross-modal information, effectively improving cross-modal mutual information, representation quality, and optimizing the distribution of feature points within the cross-modal shared semantic space. By acquiring momentum encoding queues for cross-modal semantic understanding through multi-tasking, we align ambiguous natural language representations around the invariant image features of factual information, alleviating contextual ambiguity and enhancing model robustness. Experimental validation shows that our proposed multi-task perspective of cross-modal momentum encoders outperforms similar models on standardized image classification tasks and image-text cross-modal retrieval tasks on public datasets by up to 8% on the leaderboard, demonstrating the effectiveness of the proposed method. Qualitative experiments on our self-built conservation area image-text paired dataset show that our proposed method accurately performs cross-modal retrieval and generation tasks among 8142 species, proving its effectiveness on fine-grained cross-modal image-text conservation area image datasets.

6.
Cell Tissue Bank ; 25(2): 697-703, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489016

RESUMEN

Demineralized bone matrix (DBM) has been regarded as an ideal bone substitute as a native carrier of bone morphogenetic proteins (BMPs) and other growth factors. However, the osteoinductive properties diverse in different DBM products. We speculate that the harvest origin further contributing to variability of BMPs contents in DBM products besides the process technology. In the study, the cortical bone of femur, tibia, humerus, and ulna from a signal donor were prepared and followed demineralizd into DBM products. Proteins in bone martix were extracted using guanidine-HCl and collagenase, respectively, and BMP-2 content was detected by sandwich enzyme-linked immunosorbent assay (ELISA). Variability of BMP-2 content was found in 4 different DBM products. By guanidine-HCl extraction, the average concentration in DBMs harvested from ulna, humerus, tibia, and femur were 0.613 ± 0.053, 0.848 ± 0.051, 3.293 ± 0.268, and 21.763 ± 0.344, respectively (p < 0.05), while using collagenase, the levels were 0.089 ± 0.004, 0.097 ± 0.004, 0.330 ± 0.012, and 1.562 ± 0.008, respectively (p < 0.05). In general, the content of BMP-2 in long bones of Lower limb was higher than that in long bones of upper limb, and GuHCl had remarkably superior extracted efficiency for BMP-2 compared to collagenase. The results suggest that the origin of cortical bones harvested to fabricate DBM products contribute to the variability of native BMP-2 content, while the protein extracted method only changes the measured values of BMP-2.


Asunto(s)
Matriz Ósea , Proteína Morfogenética Ósea 2 , Proteína Morfogenética Ósea 2/análisis , Proteína Morfogenética Ósea 2/metabolismo , Humanos , Matriz Ósea/química , Técnica de Desmineralización de Huesos , Huesos/química
7.
Prostate ; 83(11): 1089-1098, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37157155

RESUMEN

BACKGROUND: Transrectal ultrasonography (TRUS)/magnetic resonance imaging (MRI) fusion-guided biopsy has a high clinical application value. However, this technique has some limitations, which limit its use in routine clinical practice. Therefore, the selection of suitable proatate lesions for this technique is worthy of our attention. Synthetic MRI (SyMRI) is capable of quantifying multiple relaxation parameters, which might have potential value in preprocedural evaluation for TRUS/MRI fusion-guided biopsy of the prostate. The aim of our study is to examine the value of SyMRI quantitative parameters in preprocedural evaluation for TRUS/MRI fusion-guided biopsy of the prostate. METHODS: We prospectively selected 148 lesions in 137 patients who underwent prostate biopsy in our hospital. Next, 2-4 needles of TRUS/MRI fusion-guided biopsy combined with 10 needles of system biopsy (SB) were used as the protocol for prostate biopsy. Before biopsy, the MAGiC sequences of the MRI images of the enrolled patients underwent post-processing, and the longitudinal relaxation time (T1), transverse relaxation time (T2), and proton density (PD) were extracted. The biopsy pathology results were used as a gold standard to compare the differences in SyMRI quantitative parameters between benign and malignant prostate lesions in the peripheral and transitional zones. The receiver operating characteristic (ROC) curves were plotted to confirm the optimal SyMRI quantitative parameter for prostate lesion benignancy/malignancy performance, and the cutoff values of these parameters were used for grouping the lesions. The single-needle biopsy prostate cancer (PCa)-positivity rates (number of positive biopsy needles/total biopsy needles) and PCa overall detection rates by TRUS/MRI fusion-guided biopsy and SB were compared in different subgroups. RESULTS: The T1 and T2 values can determine the benignancy/malignancy of prostate transition lesions(p < 0.01), and the T2 value has a greater diagnostic performance (p = 0.0376). The T2 value can determine the benignancy/malignancy of prostate peripheral lesions. The optimal diagnostic cutoff values for T2 were 77 and 81 ms, respectively. The single-needle PCa positivity rate of TRUS/MRI fusion-guided biopsy was higher than SB for any prostate lesions in different subgroups (p < 0.01). However, only in the subgroup of transition zone lesions with T2 ≤ 77 ms, the PCa overall detection rate of TRUS/MRI fusion-guided biopsy was significantly higher than that of SB (p = 0.031). CONCLUSION: SyMRI-T2 value can provide a theoretical basis for the selection of suitable lesions for TRUS/MRI fusion-guided biopsy.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Próstata/patología , Biopsia Guiada por Imagen/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/patología , Ultrasonografía
8.
Environ Microbiol ; 25(7): 1238-1249, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808192

RESUMEN

Dimethylsulfoniopropionate (DMSP) is a marine organosulfur compound with important roles in stress protection, marine biogeochemical cycling, chemical signalling and atmospheric chemistry. Diverse marine microorganisms catabolize DMSP via DMSP lyases to generate the climate-cooling gas and info-chemical dimethyl sulphide. Abundant marine heterotrophs of the Roseobacter group (MRG) are well known for their ability to catabolize DMSP via diverse DMSP lyases. Here, a new DMSP lyase DddU within the MRG strain Amylibacter cionae H-12 and other related bacteria was identified. DddU is a cupin superfamily DMSP lyase like DddL, DddQ, DddW, DddK and DddY, but shares <15% amino acid sequence identity with these enzymes. Moreover, DddU proteins forms a distinct clade from these other cupin-containing DMSP lyases. Structural prediction and mutational analyses suggested that a conserved tyrosine residue is the key catalytic amino acid residue in DddU. Bioinformatic analysis indicated that the dddU gene, mainly from Alphaproteobacteria, is widely distributed in the Atlantic, Pacific, Indian and polar oceans. For reference, dddU is less abundant than dddP, dddQ and dddK, but much more frequent than dddW, dddY and dddL in marine environments. This study broadens our knowledge on the diversity of DMSP lyases, and enhances our understanding of marine DMSP biotransformation.


Asunto(s)
Liasas de Carbono-Azufre , Compuestos de Sulfonio , Secuencia de Aminoácidos , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Océanos y Mares , Compuestos de Sulfonio/metabolismo , Sulfuros/metabolismo
9.
Plant Physiol ; 190(4): 2637-2650, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35972421

RESUMEN

Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5), a highly conserved arginine (Arg) methyltransferase protein, regulates multiple aspects of the growth, development, and environmental stress responses by methylating Arg in histones and some mRNA splicing-related proteins in plants. Hydrogen sulfide (H2S) is a recently characterized gasotransmitter that also regulates various important physiological processes. l-cysteine desulfhydrase (LCD) is a key enzyme of endogenous H2S production. However, our understanding of the upstream regulatory mechanisms of endogenous H2S production is limited in plant cells. Here, we confirmed that AtPRMT5 increases the enzymatic activity of AtLCD through methylation modifications during stress responses. Both atprmt5 and atlcd mutants were sensitive to cadmium (Cd2+), whereas the overexpression (OE) of AtPRMT5 or AtLCD enhanced the Cd2+ tolerance of plants. AtPRMT5 methylated AtLCD at Arg-83, leading to a significant increase in AtLCD enzymatic activity. The Cd2+ sensitivity of atprmt5-2 atlcd double mutants was consistent with that of atlcd plants. When AtPRMT5 was overexpressed in the atlcd mutant, the Cd2+ tolerance of plants was significantly lower than that of AtPRMT5-OE plants in the wild-type background. These results were confirmed in pharmacological experiments. Thus, AtPRMT5 methylation of AtLCD increases its enzymatic activity, thereby strengthening the endogenous H2S signal and ultimately improving plant tolerance to Cd2+ stress. These findings provide further insights into the substrates of AtPRMT5 and increase our understanding of the regulatory mechanism upstream of H2S signals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sulfuro de Hidrógeno , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilación , Cistationina gamma-Liasa/genética , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Arginina/metabolismo
10.
J Org Chem ; 88(9): 5687-5695, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37120834

RESUMEN

An oxidative coupling reaction between purines and aromatic N-heterocycles was developed to synthesize a series of N-heteroaryl purine derivatives using Selectfluor as an oxidant at room temperature. This process uses a commercial oxidant, uses no base, metal, or other additives, is simple to carry out, and has a broad range of substrates.

11.
Scand J Gastroenterol ; 58(11): 1228-1236, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37317530

RESUMEN

BACKGROUND: Rivaroxaban is a direct oral anticoagulant with the highest risk of anticoagulant-induced major gastrointestinal bleeding (MGIB). Currently, there is a lack of tools to identify patients at high risk of rivaroxaban-induced MGIB. OBJECTIVE: To establish a nomogram model to predict the risk of MGIB in patients receiving rivaroxaban. METHODS: Demographic information, comorbidities, concomitant medications, and laboratory test results were collected from 356 patients (178 diagnosed with MGIB) who were taking rivaroxaban between January 2013 and June 2021. Univariate and multivariate logistic regression analyses were used to identify the independent predictors of MGIB, and a nomogram was constructed based on these predictors. A receiver operating characteristic curve, Brier score, calibration plot, decision curve, and internal validation was used to evaluate the calibration, discrimination, and clinical usefulness of the nomogram. RESULTS: Age, haemoglobin level, platelet count, creatinine level, prior peptic ulcer disease, prior bleeding, prior stroke, proton pump inhibitor use, and antiplatelet agent use were independent predictors of rivaroxaban-induced MGIB. These risk factors were used to establish the nomogram. The area under the curve of the nomogram was 0.833 (95%CI, 0.782-0.866), the Brier score was 0.171, the internal validation accuracy was 0.73, and the kappa value was 0.46. CONCLUSION: The nomogram demonstrated good discrimination, calibration, and clinical applicability. Therefore, it could accurately predict the risk of MGIB in patients treated with rivaroxaban.


Asunto(s)
Úlcera Péptica , Rivaroxabán , Humanos , Rivaroxabán/efectos adversos , Nomogramas , Hemorragia Gastrointestinal/inducido químicamente , Anticoagulantes/efectos adversos , Estudios Retrospectivos
12.
Sensors (Basel) ; 23(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37299991

RESUMEN

Device-to-device (D2D) communication is a promising wireless communication technology which can effectively reduce the traffic load of the base station and improve the spectral efficiency. The application of intelligent reflective surfaces (IRS) in D2D communication systems can further improve the throughput, but the problem of interference suppression becomes more complex and challenging due to the introduction of new links. Therefore, how to perform effective and low-complexity optimal radio resource allocation is still a problem to be solved in IRS-assisted D2D communication systems. To this end, a low-complexity power and phase shift joint optimization algorithm based on particle swarm optimization is proposed in this paper. First, a multivariable joint optimization problem for the uplink cellular network with IRS-assisted D2D communication is established, where multiple DUEs are allowed to share a CUE's sub-channel. However, the proposed problem considering the joint optimization of power and phase shift, with the objective of maximizing the system sum rate and the constraints of the minimum user signal-to-interference-plus-noise ratio (SINR), is a non-convex non-linear model and is hard to solve. Different from the existing work, instead of decomposing this optimization problem into two sub-problems and optimizing the two variables separately, we jointly optimize them based on Particle Swarm Optimization (PSO). Then, a fitness function with a penalty term is established, and a penalty value priority update scheme is designed for discrete phase shift optimization variables and continuous power optimization variables. Finally, the performance analysis and simulation results show that the proposed algorithm is close to the iterative algorithm in terms of sum rate, but lower in power consumption. In particular, when the number of D2D users is four, the power consumption is reduced by 20%. In addition, compared with PSO and distributed PSO, the sum rate of the proposed algorithm increases by about 10.2% and 38.3%, respectively, when the number of D2D users is four.


Asunto(s)
Algoritmos , Comunicación , Simulación por Computador , Ejercicio Físico , Inteligencia
13.
J Biol Chem ; 297(1): 100841, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34058201

RESUMEN

SGNH-type acetyl xylan esterases (AcXEs) play important roles in marine and terrestrial xylan degradation, which are necessary for removing acetyl side groups from xylan. However, only a few cold-adapted AcXEs have been reported, and the underlying mechanisms for their cold adaptation are still unknown because of the lack of structural information. Here, a cold-adapted AcXE, AlAXEase, from the Arctic marine bacterium Arcticibacterium luteifluviistationis SM1504T was characterized. AlAXEase could deacetylate xylooligosaccharides and xylan, which, together with its homologs, indicates a novel SGNH-type carbohydrate esterase family. AlAXEase showed the highest activity at 30 °C and retained over 70% activity at 0 °C but had unusual thermostability with a Tm value of 56 °C. To explain the cold adaption mechanism of AlAXEase, we next solved its crystal structure. AlAXEase has similar noncovalent stabilizing interactions to its mesophilic counterpart at the monomer level and forms stable tetramers in solutions, which may explain its high thermostability. However, a long loop containing the catalytic residues Asp200 and His203 in AlAXEase was found to be flexible because of the reduced stabilizing hydrophobic interactions and increased destabilizing asparagine and lysine residues, leading to a highly flexible active site. Structural and enzyme kinetic analyses combined with molecular dynamics simulations at different temperatures revealed that the flexible catalytic loop contributes to the cold adaptation of AlAXEase by modulating the distance between the catalytic His203 in this loop and the nucleophilic Ser32. This study reveals a new cold adaption strategy adopted by the thermostable AlAXEase, shedding light on the cold adaption mechanisms of AcXEs.


Asunto(s)
Acetilesterasa/química , Acetilesterasa/metabolismo , Adaptación Fisiológica , Frío , Acetilesterasa/antagonistas & inhibidores , Acetilesterasa/genética , Secuencia de Aminoácidos , Bacterias/enzimología , Dominio Catalítico , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Cinética , Metales/farmacología , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación/genética , Filogenia , Multimerización de Proteína , Especificidad por Sustrato/efectos de los fármacos , Temperatura
14.
Appl Environ Microbiol ; 88(7): e0167721, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35285716

RESUMEN

Vibrio collagenases of the M9A subfamily are closely related to Vibrio pathogenesis for their role in collagen degradation during host invasion. Although some Vibrio collagenases have been characterized, the collagen degradation mechanism of Vibrio collagenase is still largely unknown. Here, an M9A collagenase, VP397, from marine Vibrio pomeroyi strain 12613 was characterized, and its fragmentation pattern on insoluble type I collagen fibers was studied. VP397 is a typical Vibrio collagenase composed of a catalytic module featuring a peptidase M9N domain and a peptidase M9 domain and two accessory bacterial prepeptidase C-terminal domains (PPC domains). It can hydrolyze various collagenous substrates, including fish collagen, mammalian collagens of types I to V, triple-helical peptide [(POG)10]3, gelatin, and 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-o-Arg (Pz-peptide). Atomic force microscopy (AFM) observation and biochemical analyses revealed that VP397 first assaults the C-telopeptide region to dismantle the compact structure of collagen and dissociate tropocollagen fragments, which are further digested into peptides and amino acids by VP397 mainly at the Y-Gly bonds in the repeating Gly-X-Y triplets. In addition, domain deletion mutagenesis showed that the catalytic module of VP397 alone is capable of hydrolyzing type I collagen fibers and that its C-terminal PPC2 domain functions as a collagen-binding domain during collagenolysis. Based on our results, a model for the collagenolytic mechanism of VP397 is proposed. This study sheds light on the mechanism of collagen degradation by Vibrio collagenase, offering a better understanding of the pathogenesis of Vibrio and helping in developing the potential applications of Vibrio collagenase in industrial and medical areas. IMPORTANCE Many Vibrio species are pathogens and cause serious diseases in humans and aquatic animals. The collagenases produced by pathogenic Vibrio species have been regarded as important virulence factors, which occasionally exhibit direct pathogenicity to the infected host or facilitate other toxins' diffusion through the digestion of host collagen. However, our knowledge concerning the collagen degradation mechanism of Vibrio collagenase is still limited. This study reveals the degradation strategy of Vibrio collagenase VP397 on type I collagen. VP397 binds on collagen fibrils via its C-terminal PPC2 domain, and its catalytic module first assaults the C-telopeptide region and then attacks the Y-Gly bonds in the dissociated tropocollagen fragments to release peptides and amino acids. This study offers new knowledge regarding the collagenolytic mechanism of Vibrio collagenase, which is helpful for better understanding the role of collagenase in Vibrio pathogenesis and for developing its industrial and medical applications.


Asunto(s)
Colágeno Tipo I , Vibrio , Secuencia de Aminoácidos , Aminoácidos , Animales , Colágeno/metabolismo , Colágeno Tipo I/genética , Colagenasas/genética , Colagenasas/metabolismo , Mamíferos , Péptidos/metabolismo , Tropocolágeno , Vibrio/metabolismo
15.
Appl Environ Microbiol ; 88(2): e0180621, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34788071

RESUMEN

Dimethylsulfoniopropionate (DMSP) is one of the most abundant organic sulfur compounds in the oceans, which is mainly degraded by bacteria through two pathways, a cleavage pathway and a demethylation pathway. Its volatile catabolites dimethyl sulfide (DMS) and methanethiol (MT) in these pathways play important roles in the global sulfur cycle and have potential influences on the global climate. Intense DMS/DMSP cycling occurs in the Arctic. However, little is known about the diversity of cultivable DMSP-catabolizing bacteria in the Arctic and how they catabolize DMSP. Here, we screened DMSP-catabolizing bacteria from Arctic samples and found that bacteria of four genera (Psychrobacter, Pseudoalteromonas, Alteromonas, and Vibrio) could grow with DMSP as the sole carbon source, among which Psychrobacter and Pseudoalteromonas are predominant. Four representative strains (Psychrobacter sp. K31L, Pseudoalteromonas sp. K222D, Alteromonas sp. K632G, and Vibrio sp. G41H) from different genera were selected to probe their DMSP catabolic pathways. All these strains produce DMS and MT simultaneously during their growth on DMSP, indicating that all strains likely possess the two DMSP catabolic pathways. On the basis of genomic and biochemical analyses, the DMSP catabolic pathways in these strains were proposed. Bioinformatic analysis indicated that most Psychrobacter and Vibrio bacteria have the potential to catabolize DMSP via the demethylation pathway and that only a small portion of Psychrobacter strains may catabolize DMSP via the cleavage pathway. This study provides novel insights into DMSP catabolism in marine bacteria. IMPORTANCE Dimethylsulfoniopropionate (DMSP) is abundant in the oceans. The catabolism of DMSP is an important step of the global sulfur cycle. Although Gammaproteobacteria are widespread in the oceans, the contribution of Gammaproteobacteria in global DMSP catabolism is not fully understood. Here, we found that bacteria of four genera belonging to Gammaproteobacteria (Psychrobacter, Pseudoalteromonas, Alteromonas and Vibrio), which were isolated from Arctic samples, were able to grow on DMSP. The DMSP catabolic pathways of representative strains were proposed. Bioinformatic analysis indicates that most Psychrobacter and Vibrio bacteria have the potential to catabolize DMSP via the demethylation pathway and that only a small portion of Psychrobacter strains may catabolize DMSP via the cleavage pathway. Our results suggest that novel DMSP dethiomethylases/demethylases may exist in Pseudoalteromonas, Alteromonas, and Vibrio and that Gammaproteobacteria may be important participants in the marine environment, especially in polar DMSP cycling.


Asunto(s)
Compuestos de Sulfonio , Bacterias , Liasas de Carbono-Azufre/genética , Humanos , Sulfuros/metabolismo , Compuestos de Sulfonio/metabolismo , Azufre/metabolismo
16.
J Neural Transm (Vienna) ; 129(1): 85-93, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767111

RESUMEN

Genetic factors play a crucial role for the pathophysiology of treatment-resistant depression (TRD). It has been established that Catechol-O-methyltransferase (COMT) and cyclic amp-response element-binding protein (CREB) are associated with antidepressant response. The aim of this study was to explore the association between single nucleotide polymorphisms (SNPs) in COMT and CREB1 genes and TRD in a Chinese population. We recruited 181 patients with major depressive disorder (MDD) and 80 healthy controls, including 81 TRD patients. Depressive symptoms were assessed with the Hamilton Depression Rating Scale-17 (HDRS). Genotyping was performed using mass spectrometry. Genetic analyses were conducted by PLINK Software. The distribution of COMT SNP rs4818 allele and genotypes were significantly different between TRD and controls. Statistical differences in allele frequencies were observed between TRD and non-TRD groups, including rs11904814 and rs6740584 in CREB1 gene, rs4680 and rs4818 in COMT gene. There were differences in the distribution of HDRS total scores among different phenotypes of CREB1 rs11904814, CREB1 rs6740584, COMT rs4680 and rs4818. Gene-gene interaction effect of COMT-CREB1 (rs4680 × rs6740584) revealed significant epistasis in TRD. There findings indicate that COMT and CREB1 polymorphisms influence the risk of TRD and affect the severity of depressive symptoms of MDD.


Asunto(s)
Catecol O-Metiltransferasa , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Trastorno Depresivo Mayor , Estudios de Casos y Controles , Catecol O-Metiltransferasa/genética , China , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Polimorfismo de Nucleótido Simple
17.
Environ Sci Technol ; 56(9): 5830-5839, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35404578

RESUMEN

Learning from the important role of porphyrin-based chromophores in natural photosynthesis, a bionic photocatalytic system based on tetrakis (4-carboxyphenyl) porphyrin-coupled TiO2 was designed for photo-induced treating low-concentration NOx indoor gas (550 parts per billion), achieving a high NO removal rate of 91% and a long stability under visible-light (λ ≥ 420 nm) irradiation. Besides the great contribution of the conventional •O2- reactive species, a synergic effect between a singlet oxygen (1O2) and mobile hydroxyl radicals (•OHf) was first illustrated for removing NOx indoor gas (1O2 + 2NO → 2NO2, NO2 + •OHf → HNO3), inhibiting the production of the byproducts of NO2. This work is helpful for understanding the surface mechanism of photocatalytic NOx oxidation and provides a new perspective for the development of highly efficient air purification systems.


Asunto(s)
Radical Hidroxilo , Porfirinas , Dióxido de Nitrógeno , Oxidación-Reducción , Oxígeno , Oxígeno Singlete , Titanio/efectos de la radiación
18.
J Nat Prod ; 85(1): 148-161, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35029398

RESUMEN

Twelve new dimeric tetrahydroxanthones, muyocoxanthones A-L (1-12), were isolated from the endophytic fungus, Muyocopron laterale. Their structures were characterized on the basis of the interpretation of NMR and HRESIMS data. The absolute configurations of 1-10 and 12 were unambiguously determined by ECD spectrum data and single-crystal X-ray diffraction analysis. Compounds 2, 6, and 11 showed inhibitory activity against the LPS-induced production of nitric oxide (NO) in RAW 264.7 cells with IC50 values of 5.2, 1.3, and 5.1 µM, respectively.


Asunto(s)
Antiinflamatorios/farmacología , Ascomicetos/química , Xantonas/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Espectroscopía de Resonancia Magnética con Carbono-13 , Cristalografía por Rayos X/métodos , Dimerización , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Óxido Nítrico/biosíntesis , Espectroscopía de Protones por Resonancia Magnética , Células RAW 264.7 , Espectrometría de Masa por Ionización de Electrospray/métodos
19.
BMC Psychiatry ; 22(1): 176, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35272642

RESUMEN

OBJECTIVE: Medical disorders in patients with bipolar disorder (BD) have attracted more and more attention. So far, there is still a lack of studies on this issue utilizing large sample sizes in the Chinese sample. Therefore, we conducted this study to explore the clinical characteristics of BD patients comorbid medical disorders in a relatively large Chinese sample. METHODS: This was a cross-sectional study including 1,393 BD patients (882 patients with medical disorders and 511 patients without medical disorders). Their demographic and clinical characteristics were obtained by the Hospital Information System and self-designed questionnaires. RESULTS: The comorbidity rate of medical disorders in BD was 63.32%. The average number of medical disorders for a BD patient was 2.69. The top five comorbid medical disorders in BD patients were circulatory system diseases (19%), nervous system diseases (18%), endocrine and metabolic diseases (17%), digestive system diseases (16%), and respiratory system diseases (8%). BD patients with comorbid medical disorders had an older average age, lower education level, longer illness course, later onset age, lower ratio of psychotic features, more admission numbers, higher ratio of smoking and drinking alcohol, more number of manic episodes (All P < 0.05). Smoking, numbers of depressive episode, onset age, and illness course were independent risk factors of comorbidities in BD patients (All P < 0.05). CONCLUSIONS: Medical disorders in Chinese BD patients are highly prevalent. The smoking, number of depressive episodes, onset age, illness course, are correlated with BD patients comorbid medical disorders. Clinicians should pay attention to the medical disorders comorbidities in BD patients, and take effective measures to improve treatment outcome and reduce the suffering. The integrative approach should be the imperative in clinical practice.


Asunto(s)
Trastorno Bipolar , Edad de Inicio , Trastorno Bipolar/complicaciones , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/epidemiología , Comorbilidad , Estudios Transversales , Humanos , Prevalencia
20.
Prenat Diagn ; 42(7): 852-861, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35420166

RESUMEN

OBJECTIVE: We investigated a custom congenital heart disease (CHD) geneset to assess the diagnostic value of whole-exome sequencing (WES) in karyotype- and copy number variation (CNV)-negative aborted fetuses with conotruncal defects (CTDs), and to explore the impact of postnatal phenotyping on genetic diagnosis. METHODS: We sequentially analyzed CNV-seq and WES data from 47 CTD fetuses detected by prenatal ultrasonography. Fetuses with either a confirmed aneuploidy or pathogenic CNV were excluded from the WES analyses, which were performed following the American College of Medical Genetics and Genomics recommendations and a custom CHD-geneset. Imaging and autopsy were applied to obtain postnatal phenotypic information about aborted fetuses. RESULTS: CNV-seq identified aneuploidy in 7/47 cases while 13/47 fetuses were CNV-positive. Eighty-five rare deleterious variants in 61 genes (from custom geneset) were identified by WES in the remaining 27 fetuses. Of these, five pathogenic or likely pathogenic variants (PV/LPV) were identified in five fetuses, revealing a 10.6% (5/47) incremental diagnostic yield. Furthermore, RERE:c.2461_2472delGGGATGTGGCGA was reclassified as LPV based on postnatal phenotypic data. CONCLUSION: We have developed and defined a CHD gene panel that can be utilized in a subset of fetuses with CTDs. We demonstrate the utility of incorporating both prenatal and postnatal phenotypic information may facilitate WES diagnostics.


Asunto(s)
Exoma , Cardiopatías Congénitas , Aneuploidia , Variaciones en el Número de Copia de ADN , Femenino , Feto/anomalías , Feto/diagnóstico por imagen , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/genética , Humanos , Embarazo , Diagnóstico Prenatal/métodos , Secuenciación del Exoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA