Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 619(7969): 357-362, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37286606

RESUMEN

Physicians make critical time-constrained decisions every day. Clinical predictive models can help physicians and administrators make decisions by forecasting clinical and operational events. Existing structured data-based clinical predictive models have limited use in everyday practice owing to complexity in data processing, as well as model development and deployment1-3. Here we show that unstructured clinical notes from the electronic health record can enable the training of clinical language models, which can be used as all-purpose clinical predictive engines with low-resistance development and deployment. Our approach leverages recent advances in natural language processing4,5 to train a large language model for medical language (NYUTron) and subsequently fine-tune it across a wide range of clinical and operational predictive tasks. We evaluated our approach within our health system for five such tasks: 30-day all-cause readmission prediction, in-hospital mortality prediction, comorbidity index prediction, length of stay prediction, and insurance denial prediction. We show that NYUTron has an area under the curve (AUC) of 78.7-94.9%, with an improvement of 5.36-14.7% in the AUC compared with traditional models. We additionally demonstrate the benefits of pretraining with clinical text, the potential for increasing generalizability to different sites through fine-tuning and the full deployment of our system in a prospective, single-arm trial. These results show the potential for using clinical language models in medicine to read alongside physicians and provide guidance at the point of care.


Asunto(s)
Toma de Decisiones Clínicas , Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Médicos , Humanos , Toma de Decisiones Clínicas/métodos , Readmisión del Paciente , Mortalidad Hospitalaria , Comorbilidad , Tiempo de Internación , Cobertura del Seguro , Área Bajo la Curva , Sistemas de Atención de Punto/tendencias , Ensayos Clínicos como Asunto
2.
J Pathol ; 262(3): 334-346, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38180342

RESUMEN

Adenocarcinoma of the bladder is a rare urinary bladder carcinoma with limited therapy options due to lack of molecular characterization. Here, we aimed to reveal the mutational and transcriptomic landscapes of adenocarcinoma of the bladder and assess any relationship with prognosis. Between February 2015 and June 2021, a total of 23 patients with adenocarcinoma of the bladder were enrolled. These included 16 patients with primary bladder adenocarcinomas and seven patients with urachal adenocarcinoma. Whole exome sequencing (16 patients), whole genome sequencing (16 patients), bulk RNA sequencing (RNA-seq) (19 patients), and single-cell RNA-seq (5 patients) were conducted for the specimens. Correlation analysis, survival analysis, and t-tests were also performed. Prevalent T>A substitutions were observed among somatic mutations, and major trinucleotide contexts included 5'-CTC-3' and 5'-CTG-3'. This pattern was mainly contributed by COSMIC signature 22 related to chemical carcinogen exposure (probably aristolochic acid), which has not been reported in bladder adenocarcinoma. Moreover, genes with copy number changes were also enriched in the KEGG term 'chemical carcinogenesis'. Transcriptomic analysis suggested high immune cell infiltration and luminal-like features in the majority of samples. Interestingly, a small fraction of samples with an APOBEC-derived mutational signature exhibited a higher risk of disease progression compared with samples with only a chemical carcinogen-related signature, confirming the molecular and prognostic heterogeneity of bladder adenocarcinoma. This study presents mutational and transcriptomic landscapes of bladder adenocarcinoma, and indicates that a chemical carcinogen-related mutational signature may be related to a better prognosis compared with an APOBEC signature in adenocarcinoma of the bladder. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Adenocarcinoma , Vejiga Urinaria , Humanos , Vejiga Urinaria/patología , Mutación , Adenocarcinoma/genética , Adenocarcinoma/patología , Carcinógenos , Pronóstico
3.
Am J Pathol ; 193(8): 1059-1071, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37164274

RESUMEN

Unexplained recurrent spontaneous abortion (URSA) has been associated with the dysfunction of trophoblasts and decidual macrophages. Current evidence suggests that profilin1 (PFN1) plays an important role in many biological processes. However, little is known about whether PFN1 is related to URSA. Herein, the location of PFN1 was detected by immunohistochemistry, and the level of PFN1 was detected by quantitative real-time PCR, Western blot analysis, and immunohistochemistry. The proliferation of trophoblasts was detected by CCK8 and 5-ethynyl-2'-deoxyuridine assays, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays were used to detect apoptosis of trophoblasts. The migration and invasion ability of trophoblasts was assessed by using the wound-healing test and transwell test. Polarization of macrophages was detected in macrophages cultured in trophoblast conditioned medium. PFN1 expression was observed in cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts and was decreased in the villous tissue of patients with URSA. The migration and invasion ability and cell viability of trophoblastic cell lines that underwent PFN1 knockdown significantly decreased, and apoptosis increased. Opposite findings were observed after the overexpression of PFN1 in trophoblastic cells. In addition, PFN1 could regulate trophoblast function through phosphatidylinositol 3-kinase/AKT signal transduction rather than mitogen-activated protein kinase signaling pathways. Finally, knockdown of PFN1 in trophoblasts promoted tumor necrosis factor-α secretion to induce macrophage polarization to M1 phenotype, mediated by the NF-κB signaling pathway. These findings indicate that PFN1 has a broad therapeutic potential for patients with URSA.


Asunto(s)
Aborto Espontáneo , Trofoblastos , Embarazo , Humanos , Femenino , Trofoblastos/metabolismo , Transducción de Señal/fisiología , FN-kappa B/metabolismo , Sistema de Señalización de MAP Quinasas , Aborto Espontáneo/metabolismo , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Profilinas/genética , Profilinas/metabolismo
4.
Helicobacter ; 29(4): e13114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39031966

RESUMEN

BACKGROUND: Patient adherence status to the newly introduced family-based Helicobacter pylori (H. pylori) infection control and management strategy remains unclear, so are its influencing factors. We aim to investigate family members' adherence and its influencing factors during the family-based H. pylori infection management practice for related disease prevention. MATERIALS AND METHODS: Based on our previously family-based H. pylori survey in 2021, 282 families including 772 individuals were followed up 2 years after the initial survey to compare if the investigation and education might improve family member's adherence. The participant's adherence to H. pylori infection awareness, retest, treatment, publicity, gastroscopy, and hygiene habits were followed up, and their influencing factors were also analyzed. RESULTS: The overall participant's adherence to recommendations on H. pylori awareness, retest, treatment, publicity, gastroscopy, and hygiene habits were 77% (187/243), 67.3% (138/205), 60.1% (211/351), 46.5% (107/230), 45.6% (159/349), and 39.1% (213/545), respectively; and all showed improvements compared with their prior survey stages. The top reasons for rejection to treatment, retest, and gastroscopy were forgetting or unaware of H. pylori infection (30.3%), busy (32.8%), and asymptomatic (67.9%), respectively. Independent risk factor for low adherence to treatment was occupation (e.g., staff: OR 4.49, 95% CI 1.34-15.10). Independent favorable factors for treatment adherence were individuals at the ages of 18-44 years (OR 0.19, 95% CI 0.04-0.89) and had a large family size (e.g., four family members: OR 0.15, 95% CI 0.06-0.41); for retest adherence, it was individuals at the ages of 60-69 years (OR 0.23, 95% CI 0.06-0.97); for gastroscopy adherence, it was individuals at the age of 60-69 years (OR 0.46, 95% CI 0.28-0.75), and with gastrointestinal symptoms (OR 0.57, 95% CI 0.36-0.90). CONCLUSIONS: Family-based H. pylori management increases individual adherence to treatment, retest, and awareness, and there are also improved adherence to gastroscopy, publicity, and personal hygiene recommendations; further efforts are required to enhance the individual adherence rate for related disease prevention.


Asunto(s)
Familia , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , China/epidemiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Adulto Joven , Cooperación del Paciente/estadística & datos numéricos , Anciano , Encuestas y Cuestionarios , Control de Infecciones/métodos , Niño
5.
Antonie Van Leeuwenhoek ; 117(1): 74, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691182

RESUMEN

A Gram-stain positive, aerobic, alkalitolerant and halotolerant bacterium, designated HH7-29 T, was isolated from the confluence of the Fenhe River and the Yellow River in Shanxi Province, PR China. Growth occurred at pH 6.0-12.0 (optimum, pH 8.0-8.5) and 15-40℃ (optimum, 32℃) with 0.5-24% NaCl (optimum, 2-9%). The predominant fatty acids (> 10.0%) were iso-C15:0 and anteiso-C15:0. The major menaquinones were MK-7 and MK-8. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain HH7-29 T was a member of the genus Jeotgalibacillus, exhibiting high sequence similarity to the 16S rRNA gene sequences of Jeotgalibacillus alkaliphilus JC303T (98.4%), Jeotgalibacillus salarius ASL-1 T (98.1%) and Jeotgalibacillus alimentarius YKJ-13 T (98.1%). The genomic DNA G + C content was 43.0%. Gene annotation showed that strain HH7-29 T had lower protein isoelectric points (pIs) and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt and alkali. The average nucleotide identity, digital DNA-DNA hybridization values, amino acid identity values, and percentage of conserved proteins values between strain HH7-29 T and its related species were 71.1-83.8%, 19.5-27.4%, 66.5-88.4% and 59.8-76.6%, respectively. Based on the analyses of phenotypic, chemotaxonomic, phylogenetic and genomic features, strain HH7-29 T represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus haloalkalitolerans sp. nov. is proposed. The type strain is HH7-29 T (= KCTC 43417 T = MCCC 1K07541T).


Asunto(s)
Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Ríos , ARN Ribosómico 16S/genética , China , Ríos/microbiología , ADN Bacteriano/genética , Ácidos Grasos/análisis , Cloruro de Sodio/metabolismo , Técnicas de Tipificación Bacteriana , Fosfolípidos/análisis , Análisis de Secuencia de ADN , Hibridación de Ácido Nucleico
6.
Plant Cell Rep ; 43(5): 123, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642148

RESUMEN

KEY MESSAGE: CitCAT1 and CitCAT2 were cloned and highly expressed in mature leaves. High temperatures up-regulated CitCAT1 expression, while low temperatures and Diversispora versiformis up-regulated CitCAT2 expression, maintaining a low oxidative damage. Catalase (CAT), a tetrameric heme-containing enzyme, removes hydrogen peroxide (H2O2) to maintain low oxidative damage in plants exposed to environmental stress. This study aimed to clone CAT genes from Citrus sinensis cv. "Oita 4" and analyze their expression patterns in response to environmental stress, exogenous abscisic acid (ABA), and arbuscular mycorrhizal fungal inoculation. Two CAT genes, CitCAT1 (NCBI accession: PP067858) and CitCAT2 (NCBI accession: PP061394) were cloned, and the open reading frames of their proteins were 1479 bp and 1539 bp, respectively, each encoding 492 and 512 amino acids predicted to be localized in the peroxisome, with CitCAT1 being a stable hydrophilic protein and CitCAT2 being an unstable hydrophilic protein. The similarity of their amino acid sequences reached 83.24%, and the two genes were distantly related. Both genes were expressed in stems, leaves, flowers, and fruits, accompanied by the highest expression in mature leaves. In addition, CitCAT1 expression was mainly up-regulated by high temperatures (37 °C), exogenous ABA, and PEG stress within a short period of time, whereas CitCAT2 expression was up-regulated by exogenous ABA and low-temperature (4 °C) stress. Low temperatures (0 °C) for 12 h just up-regulated CitCAT2 expression in Diversispora versiformis-inoculated plants, and D. versiformis inoculation up-regulated CitCAT2 expression, along with lower hydrogen peroxide and malondialdehyde levels in mycorrhizal plants at low temperatures. It is concluded that CitCAT2 has an important role in resistance to low temperatures as well as mycorrhizal enhancement of host resistance to low temperatures.


Asunto(s)
Hongos , Micorrizas , Micorrizas/fisiología , Peróxido de Hidrógeno , Estrés Fisiológico/genética , Clonación Molecular
7.
Drug Resist Updat ; 66: 100907, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36527888

RESUMEN

The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Antígeno B7-H1 , Resistencia a Medicamentos , Inmunoterapia , Microambiente Tumoral
8.
BMC Health Serv Res ; 24(1): 506, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654347

RESUMEN

PURPOSE: To examine the correlation between body mass index (BMI) and mental well-being in Chinese nurses during the COVID-19 epidemic. METHOD: This study was conducted in a tertiary hospital using a cross-sectional design. A total of 2,811 nurses were enlisted at Shengjing Hospital in China during the period from March to April, 2022. Information was gathered through a questionnaire that individuals completed themselves. The mental health of the participants was assessed using the Patient Health Questionnaire-9 and the Generalized Anxiety Disorder Assessment-7. Binary logistic regression was used to calculate adjusted odds ratios (ORs) and their corresponding 95% confidence intervals. RESULTS: The prevalence of nurses experiencing depression and anxiety was 7.8% (219) and 6.7% (189), respectively. Regarding depression after adjustment, the odds ratios (ORs) for each quartile, compared to the lowest quartile, were as follows: 0.91 (95% confidence interval [CI]: 0.53, 1.56), 2.28 (95% CI: 0.98, 3.77), and 2.32 (95% CI: 1.41, 3.83). The p-value for trend was found to be 0.001. The odds ratios (ORs) for anxiety after adjustment were 2.39 (0.83, 4.36), 4.46 (0.51, 7.93), and 2.81 (1.56, 5.08) when comparing the highest quartiles to the lowest quartile. The p-value for trend was 0.009. CONCLUSION: This study found a positive association between BMI and poor mental health among nurses during the COVID-19 pandemic, particularly in those who were overweight or obesity. The findings could assist in developing interventions and help policy-makers establish appropriate strategies to support the mental health of frontline nurses, especially those who are overweight or obesity.


Asunto(s)
Índice de Masa Corporal , COVID-19 , Depresión , Humanos , Estudios Transversales , China/epidemiología , Femenino , Adulto , COVID-19/epidemiología , COVID-19/psicología , Masculino , Depresión/epidemiología , Salud Mental/estadística & datos numéricos , Ansiedad/epidemiología , SARS-CoV-2 , Persona de Mediana Edad , Prevalencia , Enfermeras y Enfermeros/psicología , Enfermeras y Enfermeros/estadística & datos numéricos , Encuestas y Cuestionarios , Obesidad/epidemiología , Obesidad/psicología
9.
Biochem Genet ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719988

RESUMEN

The aim of this study is to investigate the activation of NF-κB signaling pathway and the regulation of the expression of genes related to chorionic villus growth by the binding of LncRNA MTC (XLOC_005914) and p65 (transcription factor p65 [Capra hircus], XP_017898873.1). In addition, the regulation of LncRNA MTC and p65 binding on the proliferation of Liaoning Cashmere Goat skin fibroblasts is investigated. The upregulation of LncRNA MTC promoted the proliferation of skin fibroblasts, and the NF-κB signaling pathway played an important role in this process. Compared with the negative control (NC group), the expression of TNFα and NFKB2(NF-κB) genes was highly significantly up-regulated (P < 0.001), and NFKBIA(IκBɑ) genes were highly significantly down-regulated (P < 0.01) after LncRNA MTC overexpression (OE group). The expression levels of TNFα and NFκB-P-p65 proteins were upregulated in the OE group; NF-κB-p65 expression levels were upregulated in the nucleus, IκBα expression levels were downregulated in the cytoplasm, and P-IκBα expression levels were upregulated. LncRNA MTC and p65 proteins were co-localized in the cells. Meanwhile, LncRNA MTC and p65 protein showed significant nucleation in the OE group. RNA pull-down and LC-MS/MS verified that p65 protein was indeed an interacting protein of LncRNA MTC. LncRNA MTC binds to p65 protein, upregulates the expression of TNFα protein, nucleates p65 protein, and activates NF-κB signaling pathway to promote the proliferation of skin fibroblasts in Liaoning Cashmere Goat.

10.
Altern Ther Health Med ; 30(4): 130-138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518167

RESUMEN

Objective: The emergence of immunotherapy has heralded a profound transformation in the therapeutic landscape of bladder cancer (BLAC). Immunotherapy, with its unique potential for "combination therapy", has brought about greater possibilities for treating BLCA. However, there is significant heterogeneity among bladder cancer patients, and a portion of those in advanced stages may not experience substantial benefits from chemotherapy. Immunotherapy offers a potential ray of hope for specific patient subsets. Thus, predicting the effectiveness of tumor immunotherapy and providing them with more precise treatment strategies hold paramount importance and clinical value in delivering personalized therapeutic interventions for advanced bladder cancer patients. This study is designed to establish a risk score model derived from immune-related genes that can effectively assess prognosis and immunotherapy outcomes in patients with bladder cancer. Methods: The IMvigor210 dataset served as our training set for developing the prognostic model based on immune-related genes. Robust 7-gene expression patterns were investigated from the training set. A time-dependent receiver operating characteristic (ROC) curve and Kaplan-Meier (KM)analysis were employed to determine the prognostic relevance of these gene patterns. Independent datasets collected from the Cancer Genome Atlas Program (TCGA) and Gene Expression Omnibus (GEO) databases were additionally utilized for re-determination. The association between the 7-gene signature-based risk score and immunological subtypes, tumor mutational burden (TMB), immune checkpoint expressions, and the proportion of immune cell infiltration was assessed within training and test sets. Furthermore, the training set's predictive potential for immunotherapy response was assessed using the 7-gene signature, and its validity was externally verified on three datasets (GSE176307, GSE140901, and GSE91016). By validating the 7-gene signature externally, we eneralized the findings beyond the original training set, and assessed the model's performance in diverse contexts. Consistent performance across these datasets reinforces the robustness and clinical utility of our 7-gene signature. Results: Employing the transcriptional and clinical information from the IMvigor210 for training, 348 patients were classified into two clusters with notable distinctions in prognostic stratification and immunotherapy efficacy. Seven immune-related genes Indoleamine 2,3-dioxygenase 1 (IDO1), TNF receptor superfamily member 17 (TNFRSF17), Killer Cell Lectin Like Receptor K1 (KLRK1), TNF receptor superfamily member 14 (TNFSF14), Lymphocyte-activation gene 3 (LAG3), Killer Cell Lectin Like Receptor C1 (KLRC1), and Ecto-5'-nucleotidase (NT5E) were screened based on different expression genes (DEGs) between the two clusters. The expression levels of these seven genes and the accompanying univariate component Cox regression coefficients, were computed to create a 7-gene signature-based risk score. The median value of the risk score was utilized to categorize the BLCA individuals into high-risk and low-risk groups. Researchers identified that in the low-risk group, individuals exhibited a noticeably improved chance of surviving. The external validation cohorts verified the risk score model's prognostic capacity. Furthermore, it was demonstrated that while low-risk individuals possessed higher TMB scores, higher expression of immune checkpoint genes, and lower levels of immunological infiltration, they responded more favorably to immunotherapy. The clinical relevance of the risk score model was validated in three immunotherapy groups. Conclusion: The risk score model might be utilized to forecast the prognosis and efficacy of immunotherapy in BLCA patients, offering a novel course of treatment for these individuals. For patients undergoing immunotherapy, this gene signature can help predict treatment response. Low-risk patients may benefit from more tailored monitoring and personalized immunotherapy regimens. However, more investigations are required to validate its accuracy and effectiveness in a prospective cohort with larger sample sizes.


Asunto(s)
Inmunoterapia , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/terapia , Humanos , Pronóstico , Inmunoterapia/métodos , Biomarcadores de Tumor/genética , Femenino , Masculino
11.
J Obstet Gynaecol ; 44(1): 2360547, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38904638

RESUMEN

BACKGROUND: MiR-381 can regulate the expression of cyclin A2 (CCNA2) to inhibit the proliferation and migration of bladder cancer cells, but whether miR-381 has the same function in breast cancer is not well know. METHODS: The over express or silence miR-381 expressing cell lines were constructed by lentivirus infection to reveal the biological functions of miR-381 in vitro. The expression of miR-381 and CCNA2 in 162 breast cancer patients were detected to further reveal their impact and predictive value on progression-free survival (PFS) and overall survival (OS). RESULTS: After transfection of MDA-MB-231 and MCF-7 cells with miR-381 mimics, the expression of miR-381 was effectively up-regulated and CCNA2 was effectively down-regulated, while the opposite results were observed in tumour cell which transfected with miR-381 inhibitors. After transfection of cell lines with miR-381 mimics, tumour cell activity was significantly reduced, while the opposite results were observed in tumour cell which transfected with miR-381 inhibitors. The area under curves (AUCs) of miRNA-381 and CCNA2 for predicting PFS and OS were 0.711, 0.695, 0.694 and 0.675 respectively. Cox regression analysis showed that miRNA-381 ≥ 1.65 2-ΔΔCt and CCNA ≥ 2.95 2-ΔΔCt were the influence factors of PFS and OS, the hazard ratio (HR) values were 0.553, 2.075, 0.462 and 2.089, respectively. CONCLUSION: miR-381 inhibitors breast cancer cells proliferation and migration by down-regulating the expression of CCNA2, both of them can predict the prognosis of breast cancer.


miR-381 can regulate the expression of cyclin A2 and inhibit the proliferation and migration of bladder cancer cells, but whether miR-381 has the same function in breast cancer is not well know. We analysed the levels of miR-381 and cyclin A2 in breast cancer patients and breast cancer cells to reveal the mechanism of miR-381 affecting the expression of cyclin A2. We found miRNA-381 affects the proliferation and migration of breast cancer cells by down-regulating the expression of cyclin A2. The expression of serum miR-381 and cyclin A2 have important values in predicting the prognosis of breast cancer. Our findings provide mechanistic insights into how miR-381 regulates the proliferation and migration of breast cancer, as well as a new target for clinical treatment. Future research may focus on how to improve patient prognosis by up-regulating expression of miR-381 and down-regulating the expression of cyclin A2.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Ciclina A2 , Regulación Neoplásica de la Expresión Génica , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Proliferación Celular/genética , Ciclina A2/genética , Ciclina A2/metabolismo , Pronóstico , Persona de Mediana Edad , Línea Celular Tumoral , Células MCF-7 , Adulto
12.
BMC Oral Health ; 24(1): 418, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580938

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy. The oncometabolites have been studied in OSCC, but the mechanism of metabolic reprogramming remains unclear. To identify the potential metabolic markers to distinguish malignant oral squamous cell carcinoma (OSCC) tissue from adjacent healthy tissue and study the mechanism of metabolic reprogramming in OSCC. We compared the metabolites between cancerous and paracancerous tissues of OSCC patients by 1HNMR analysis. We established OSCC derived cell lines and analyzed their difference of RNA expression by RNA sequencing. We investigated the metabolism of γ-aminobutyrate in OSCC derived cells by real time PCR and western blotting. Our data revealed that much more γ-aminobutyrate was produced in cancerous tissues of OSCC patients. The investigation based on OSCC derived cells showed that the increase of γ-aminobutyrate was promoted by the synthesis of glutamate beyond the mitochondria. In OSCC cancerous tissue derived cells, the glutamate was catalyzed to glutamine by glutamine synthetase (GLUL), and then the generated glutamine was metabolized to glutamate by glutaminase (GLS). Finally, the glutamate produced by glutamate-glutamine-glutamate cycle was converted to γ-aminobutyrate by glutamate decarboxylase 2 (GAD2). Our study is not only benefit for understanding the pathological mechanisms of OSCC, but also has application prospects for the diagnosis of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/patología , Glutamina/genética , Glutamina/metabolismo , Reprogramación Metabólica , Glutamatos/genética , Glutamatos/metabolismo , Línea Celular Tumoral
13.
Breast Cancer Res ; 25(1): 59, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37254190

RESUMEN

Metastasis accounts for most cancer-associated deaths; yet, this complex process remains poorly understood, particularly the relationship between distant metastasis and primary site-derived cells. Here, we modified the classical MMTV-PyMT breast carcinoma model to trace the fate of mammary-derived carcinoma cells. We show that within the lung, when the metastatic breast carcinoma cells are conditionally depleted, transformed lung epithelial cells generate new metastases. Metastatic breast carcinoma cells transmit H19 long noncoding (lnc) RNA to lung epithelial cells through exosomes. SF3B1 bearing mutations at arginine-625 alternatively splices H19 lncRNA in lung epithelial cells, which selectively acts like a molecular sponge to sequester let-7a and induces Myc upregulation. Under the conditional elimination of primary site-derived breast carcinoma cells, lung malignant cells expressing the mutated SF3B1 splice variant dominate the newly created tumors. Our study suggests that these new carcinoma cells originating from within the colonized organ can replace the primary site-derived malignant cells whenever their expansion is abrogated using an inducible diphtheria toxin receptor in our designed system. These findings should call for a better understanding of metastatic tumors with the specific origin during cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Neoplasias Mamarias Animales , ARN Largo no Codificante , Animales , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Empalme Alternativo , Mama/patología , Pulmón/patología , Neoplasias Mamarias Animales/patología , Neoplasias Pulmonares/secundario , Factores de Transcripción/genética , Línea Celular Tumoral
14.
Mol Pain ; 19: 17448069231170072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37002193

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, and its specific pathogenesis is still unclear. We have previously reported that TTX-resistant (TTX-R) sodium channels in colon-specific dorsal root ganglion (DRG) neurons were sensitized in a rat model of visceral hypersensitivity induced by neonatal colonic inflammation (NCI). However, the detailed molecular mechanism for activation of sodium channels remains unknown. This study was designed to examine roles for melatonin (MT) in sensitization of sodium channels in NCI rats. METHODS: Colorectal distention (CRD) in adult male rats as a measure of visceral hypersensitivity. Colon-specific dorsal root ganglion (DRG) neurons were labeled with DiI and acutely dissociated for measuring excitability and sodium channel current under whole-cell patch clamp configurations. Western blot and Immunofluorescence were employed to detect changes in expression of Nav1.8 and MT2. RESULTS: The results showed that rats exhibited visceral hypersensitivity after NCI treatment. Intrathecal application of melatonin significantly increased the threshold of CRD in NCI rats with a dose-dependent manner, but has no role in the control group. Whole-cell patch clamp recording showed that melatonin remarkably decreased the excitability and the density of TTX-R sodium channel in DRG neurons from NCI rats. The expression of MT2 receptor at the protein level was markedly lower in NCI rats. 8MP, an agonist of MT2 receptor, enhanced the distention threshold in NCI rats. Application of 8MP reversed the enhanced hypersensitivity of DRG neurons from NCI rats. 8MP also reduced TTX-R sodium current density and modulated dynamics of TTX-R sodium current activation. CONCLUSIONS: These data suggest that sensitization of sodium channels of colon DRG neurons in NCI rats is most likely mediated by MT2 receptor, thus identifying a potential target for treatment for chronic visceral pain in patients with IBS.


Asunto(s)
Síndrome del Colon Irritable , Melatonina , Dolor Visceral , Ratas , Animales , Masculino , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/metabolismo , Ratas Sprague-Dawley , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Dolor Visceral/metabolismo , Nocicepción , Receptor de Melatonina MT2/metabolismo , Ganglios Espinales/metabolismo , Tetrodotoxina , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo
15.
Arch Biochem Biophys ; 738: 109561, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898621

RESUMEN

The survival of ovarian granulosa cells is of great significance to the physiological maintenance of the ovary. Oxidative damage to the ovarian granulosa cells can lead to various diseases related to ovarian dysfunction. Pterostilbene exerts many pharmacological effects, such as anti-inflammatory and cardiovascular protective effects. Moreover, pterostilbene was shown to have antioxidant properties. This study aimed to investigate the effect and underlying mechanism of pterostilbene on oxidative damage in ovarian granulosa cells. Ovarian granulosa cell (OGC) lines COV434 and KGN were exposed to H2O2 to establish an oxidative damage model. After treatment with different concentrations of H2O2 or pterostilbene, the cell viability, mitochondrial membrane potential, oxidative stress, and iron levels were detected, and the expression of ferroptosis-related and Nrf2/HO-1 signaling pathway-related proteins were evaluated. Pterostilbene treatment could effectively improve cell viability, reduce oxidative stress, and inhibit ferroptosis stimulated by H2O2. More importantly, pterostilbene could up-regulate Nrf2 transcription by stimulating histone acetylation, and inhibition of Nrf2 signaling could reverse the therapeutic effect of pterostilbene. In conclusion, this research shows that pterostilbene protects human OGCs from oxidative stress and ferroptosis through the Nrf2/HO-1 pathway.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Femenino , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Células de la Granulosa/metabolismo
16.
PLoS Comput Biol ; 18(3): e1009407, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35263318

RESUMEN

Performing a cognitive task requires going through a sequence of functionally diverse stages. Although it is typically assumed that these stages are characterized by distinct states of cortical synchrony that are triggered by sub-cortical events, little reported evidence supports this hypothesis. To test this hypothesis, we first identified cognitive stages in single-trial MEG data of an associative recognition task, showing with a novel method that each stage begins with local modulations of synchrony followed by a state of directed functional connectivity. Second, we developed the first whole-brain model that can simulate cortical synchrony throughout a task. The model suggests that the observed synchrony is caused by thalamocortical bursts at the onset of each stage, targeted at cortical synapses and interacting with the structural anatomical connectivity. These findings confirm that cognitive stages are defined by distinct states of cortical synchrony and explains the network-level mechanisms necessary for reaching stage-dependent synchrony states.


Asunto(s)
Encéfalo , Tálamo , Cognición
17.
Inorg Chem ; 62(17): 6864-6870, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078343

RESUMEN

The first carbonatotellurites, AKTeO2(CO3) (A = Li, Na), have been successfully synthesized by using boric acid as the mineralizer. AKTeO2(CO3) (A = Li, Na) crystallize in the monoclinic space group P21/n (no. 14), and their structures exhibit the novel zero-dimensional (0D) [Te2C2O10]4- clusters, in which two [TeO4]4- groups form a [Te2O6]4- dimer via edge-sharing, with each side of the dimer attached by a [CO3]2- group via a Te-O-C bridge. The alkali metal cations occupy the voids between the 0D clusters and maintain the charge balance. The ultraviolet-visible-near-infrared diffuse reflectance spectra show that the short absorption cut-off edges of LiKTeO2(CO3) (LKTC) and NaKTeO2(CO3) (NKTC) are 248 and 240 nm, respectively, and LKTC exhibits the largest experimental band gap (4.58 eV) among all of the tellurites containing the π-conjugated anionic groups reported. Theoretical calculations revealed that they exhibit moderate birefringences of 0.029 and 0.040@1064 nm, respectively.

18.
Chaos ; 33(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972302

RESUMEN

Over the past decades, chimera states have attracted considerable attention given their unexpected symmetry-breaking spatiotemporal nature and simultaneously exhibiting synchronous and incoherent behaviors under specific conditions. Despite relevant precursory results of such unforeseen states for diverse physical and topological configurations, there remain structures and mechanisms yet to be unveiled. In this work, using mean-field techniques, we analyze a multilayer network composed of two populations of heterogeneous Kuramoto phase oscillators with coevolutive coupling strengths. Moreover, we employ the geometric singular perturbation theory through the inclusion of a time-scale separation between the dynamics of the network elements and the adaptive coupling strength connecting them, gaining a better insight into the behavior of the system from a fast-slow dynamics perspective. Consequently, we derive the necessary and sufficient condition to produce stable chimera states when considering a coevolutionary intercoupling strength. Additionally, under the aforementioned constraint and with a suitable adaptive law election, it is possible to generate intriguing patterns, such as persistent breathing chimera states. Thereafter, we analyze the geometric properties of the mean-field system with a coevolutionary intracoupling strength and demonstrate the production of stable chimera states. Next, we give arguments for the presence of such patterns in the associated network under specific conditions. Finally, relaxation oscillations and canard cycles, seemingly related to breathing chimeras, are numerically produced under identified conditions due to the geometry of our system.

19.
J Neurochem ; 160(1): 51-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34407220

RESUMEN

Injury to long axonal projections is a central pathological feature at the early phase of intracerebral hemorrhage (ICH). It has been reported to contribute to persistent functional disability following ICH. However, the molecular mechanisms that drive axonal degeneration remain unclear. Autologous blood was injected into the striatum to mimic the pathology of ICH. Observed significant swollen axons with characteristic retraction bulbs were found around the striatal hematoma at 24 h after ICH. Electronic microscopic examination revealed highly disorganized microtubule and swollen mitochondria in the retraction bulbs. MEC17 is a specific α-tubulin acetyltransferase, ablation of acetylated α-tubulin in MEC17-/- mice aggravated axonal injury, axonal transport mitochondria dysfunction, and motor dysfunction. In contrast, treatment with tubastatin A (TubA), which promotes microtubule acetylation, significantly alleviated axonal injury and protected the integrity of the corticospinal tract and fine motor function after ICH. Moreover, results showed that 41% mitochondria were preferentially bundled to the acetylated α-tubulin in identifiable axons and dendrites in primary neurons. This impaired axonal transport of mitochondria in primary neurons of MEC17-/- mice. Given that opening of mitochondrial permeability transition pore (mPTP) induces mitochondrial dysfunction and impairs ATP supply thereby promoting axonal injury, we enhanced the availability of acetylated α-tubulin using TubA and inhibited mPTP opening with cyclosporin A. The results indicated that this combined treatment synergistically protected corticospinal tract integrity and promoted fine motor control recovery. These findings reveal key intracellular mechanisms that drive axonal degeneration after ICH and highlight the need to target multiple factors and respective regulatory mechanisms as an effective approach to prevent axonal degeneration and motor dysfunction after ICH.


Asunto(s)
Acetiltransferasas/metabolismo , Transporte Axonal/fisiología , Hemorragia Cerebral/patología , Mitocondrias/patología , Degeneración Nerviosa/patología , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Axones/metabolismo , Axones/patología , Hemorragia Cerebral/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microtúbulos/metabolismo , Mitocondrias/metabolismo , Degeneración Nerviosa/metabolismo
20.
Inorg Chem ; 61(28): 10629-10633, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35786871

RESUMEN

Two new borogermanate/borosilicate fluorides, namely, NaBa3[M2B7O16(OH)2]F2 (M = Ge, Si), have been successfully synthesized through a conventional mild hydrothermal method. They represent the first examples of mixed alkali and alkaline-earth borogermanate/borosilicate fluorides. NaBa3[M2B7O16(OH)2]F2 (M = Ge, Si) crystallize in the space group of C2/c, and their structures feature a unique 3D anionic framework composed of [B7O16(OH)2]13- polyanions corner-sharing with SiO4 or GeO4 tetrahedra, forming 1D 10-membered-ring tunnels along the b axis, which are filled by Na+, Ba2+, and F- ions. UV-vis-near-IR absorption spectra identify the title compounds possessing short deep-ultraviolet absorption edges (below 200 nm), while their birefringences were calculated to be 0.021 and 0.016 at 1064 nm, respectively. Optical property, thermal stability, and theoretical calculations have also been conducted on NaBa3[M2B7O16(OH)2]F2 (M = Ge, Si).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA