Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Phytopathology ; 112(2): 373-386, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34124940

RESUMEN

Higher-order chromatin structures play important roles in regulating multiple biological processes such as growth and development as well as biotic and abiotic stress response. However, little is known about three-dimensional chromatin structures in Paulownia or about whole-genome chromatin conformational changes that occur in response to Paulownia witches' broom (PaWB) disease. We used high-throughput chromosome conformation capture (Hi-C) to obtain genome-wide profiles of chromatin conformation in both healthy and phytoplasma-infected Paulownia fortunei genome. The heat map results indicated that the strongest interactions between chromosomes were in the telomeres. We confirmed that the main structural characteristics of A/B compartments, topologically associated domains, and chromatin loops were prominent in the Paulownia genome and were clearly altered in phytoplasma-infected plants. By combining chromatin immunoprecipitation sequencing, Hi-C signals, and RNA sequencing data, we inferred that the chromatin structure changed and the modification levels of three histones (H3K4me3/K9ac/K36me3) increased in phytoplasma-infected P. fortunei, which was associated with changes of transcriptional activity. We concluded that for epigenetic modifications, transcriptional activity might function in combination to shape chromatin packing in healthy and phytoplasm-infected Paulownia. Finally, 11 genes (e.g., RPN6, Sec61 subunit-α) that were commonly located at specific topologically associated domain boundaries, A/B compartment switching and specific loops, and had been associated with histone marks were identified and considered as closely related to PaWB stress. Our results provide new insights into the nexus between gene regulation and chromatin conformational alterations in nonmodel plants upon phytopathogen infection and plant disease resistance.


Asunto(s)
Lamiales , Phytoplasma , Cromatina , Lamiales/genética , Phytoplasma/genética , Enfermedad por Fitoplasma , Enfermedades de las Plantas/genética
2.
BMC Genomics ; 16: 896, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26537848

RESUMEN

BACKGROUND: Paulownia witches' broom (PaWB) is a fatal disease of Paulownia caused by a phytoplasma. In previous studies, we found that plants with PaWB symptoms would revert to a healthy morphology after methyl methane sulfonate (MMS) treatment. To completely understand the gene expression profiles of the Paulownia-phytoplasma interaction, three high-throughput sequencing technologies were used to investigate changes of gene expression and microRNAs (miRNAs) in healthy Paulownia tomentosa plantlets, PaWB-infected plantlets, and PaWB-infected plantlets treated with 60 mg · L(-1) MMS. METHODS: Transcriptome, miRNAs and degradome sequencing were performed to explore the global gene expression profiles in the process of Paulownia tomentosa with phytoplasma infection. RESULTS: A total of 98,714 all-unigenes, 62 conserved miRNAs, and 35 novel miRNAs were obtained, among which 902 differentially expressed genes (DEGs) and 24 miRNAs were found to be associated with PaWB disease. Subsequently, the target genes of these miRNAs were predicted by degradome sequencing. Interestingly, we found that 19 target genes of these differentially expressed miRNAs were among the 902 DEGs. The targets of pau-miR156g, pau-miR403, and pau-miR166c were significantly up-regulated in the P. tomentosa plantlets infected with phytoplasma. Interaction of miRNA -target genes mediated gene expression related to PaWB were identified. CONCLUSIONS: The results elucidated the possible roles of the regulation of genes and miRNAs in the Paulownia-phytoplasma interaction, which will enrich our understanding of the mechanisms of PaWB disease in this plant.


Asunto(s)
Lamiales/genética , MicroARNs/biosíntesis , Phytoplasma/patogenicidad , Proteínas de Plantas/biosíntesis , Regulación Bacteriana de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Lamiales/microbiología , MicroARNs/genética , Phytoplasma/genética , Enfermedades de las Plantas/genética , Transcriptoma/genética
3.
Int J Mol Sci ; 15(8): 14669-83, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25196603

RESUMEN

DNA methylation is believed to play important roles in regulating gene expression in plant growth and development. Paulownia witches' broom (PaWB) infection has been reported to be related to gene expression changes in paulownia plantlets. To determine whether DNA methylation is associated with gene expression changes in response to phytoplasma, we investigated variations in genomic DNA sequence and methylation in PaWB plantlets treated with methyl methane sulfonate (MMS) using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) techniques, respectively. The results indicated that PaWB seedings recovered a normal morphology after treatment with more than 15 mg·L(-1) MMS. PaWB infection did not cause changes of the paulownia DNA sequence at the AFLP level; However, DNA methylation levels and patterns were altered. Quantitative real-time PCR (qRT-PCR) showed that three of the methylated genes were up-regulated and three were down-regulated in the MMS-treated PaWB plantlets that had regained healthy morphology. These six genes might be involved in transcriptional regulation, plant defense, signal transduction and energy. The possible roles of these genes in PaWB are discussed. The results showed that changes of DNA methylation altered gene expression levels, and that MSAP might help identify genes related to PaWB.


Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados/métodos , Magnoliopsida/genética , Magnoliopsida/microbiología , Polimorfismo Genético/genética , Phytoplasma/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Front Plant Sci ; 15: 1260140, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371410

RESUMEN

With environmental problems such as climate global warming, drought has become one of the major stress factors, because it severely affects the plant growth and development. Silicon dioxide nanoparticles (SiO2 NPs) are crucial for mitigating abiotic stresses suffered by plants in unfavorable environmental conditions and further promoting plant growth, such as drought. This study aimed to investigate the effect of different concentrations of SiO2 NPs on the growth of the Ehretia macrophylla Wall. seedlings under severe drought stress (water content in soil, 30-35%). The treatment was started by starting spraying different concentrations of SiO2 NPs on seedlings of Ehretia macrophyla, which were consistently under normal and severe drought conditions (soil moisture content 30-35%), respectively, at the seedling stage, followed by physiological and biochemical measurements, transcriptomics and metabolomics analyses. SiO2 NPs (100 mg·L-1) treatment reduced malondialdehyde and hydrogen peroxide content and enhanced the activity of antioxidant enzymes under drought stress. Transcriptomic analysis showed that 1451 differentially expressed genes (DEGs) in the leaves of E. macrophylla seedlings were regulated by SiO2 NPs under drought stress, and these genes mainly participate in auxin signal transduction and mitogen-activated protein kinase signaling pathways. This study also found that the metabolism of fatty acids and α-linolenic acids may play a key role in the enhancement of drought tolerance in SiO2 NP-treated E. macrophylla seedlings. Metabolomics studies indicated that the accumulation level of secondary metabolites related to drought tolerance was higher after SiO2 NPs treatment. This study revealed insights into the physiological mechanisms induced by SiO2 NPs for enhancing the drought tolerance of plants.

5.
Int J Biol Macromol ; 242(Pt 2): 124770, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164135

RESUMEN

The current understanding of the pathogenesis of phytoplasma is still very limited and challenging. Here, ceRNA regulatory network and degradome sequencing identified a PfmiR156f-PfSPL regulatory module in Paulownia fortunei infected by phytoplasma, and RLM-5'RACE and dual luciferase analyses verified the relationship. The PfmiR156 cleavage site was located at 1104 nt and 1177 nt of PfSPL1 and PfSPL10, respectively. MG132 and epoxomicin, two 26S proteasome inhibitors, significantly increased the accumulation of PfSPL1. PfSPL1 was also the attack target of phytoplasma effectors (Pawb 3/9/16/37/51) after the phytoplasma invaded Paulownia. Moreover, molecular docking implied that the effectors may interact with the conserved SBP domain of the target protein PfSPL1. Basically, these results indicated that the stability of PfSPL1 was regulated by PfmiR156 cleavage activity and/or the 26S proteasome pathway at the post-translation level. The PfSPL1, which is a transcription factor, was also the one of the targets of multiple effectors attacking Paulownia. This study provides a good scope to understand the paulownia phytoplasma infecting mechanism.


Asunto(s)
Lamiales , Phytoplasma , Phytoplasma/genética , Factores de Transcripción/genética , Simulación del Acoplamiento Molecular , Regulación de la Expresión Génica de las Plantas
6.
Mol Plant ; 14(10): 1668-1682, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34214658

RESUMEN

Paulownias are among the fastest growing trees in the world, but they often suffer tremendous loss of wood production due to infection by Paulownia witches' broom (PaWB) phytoplasmas. In this study, we have sequenced and assembled a high-quality nuclear genome of Paulownia fortunei, a commonly cultivated paulownia species. The assembled genome of P. fortunei is 511.6 Mb in size, with 93.2% of its sequences anchored to 20 pseudo-chromosomes, and it contains 31 985 protein-coding genes. Phylogenomic analyses show that the family Paulowniaceae is sister to a clade composed of Phrymaceae and Orobanchaceae. Higher photosynthetic efficiency is achieved by integrating C3 photosynthesis and the crassulacean acid metabolism pathway, which may contribute to the extremely fast growth habit of paulownia trees. Comparative transcriptome analyses reveal modules related to cambial growth and development, photosynthesis, and defense responses. Additional genome sequencing of PaWB phytoplasma, combined with functional analyses, indicates that the effector PaWB-SAP54 interacts directly with Paulownia PfSPLa, which in turn causes the degradation of PfSPLa by the ubiquitin-mediated pathway and leads to the formation of witches' broom. Taken together, these results provide significant insights into the biology of paulownias and the regulatory mechanism for the formation of PaWB.


Asunto(s)
Genoma de Planta , Lamiales/crecimiento & desarrollo , Lamiales/genética , Árboles/crecimiento & desarrollo , Evolución Molecular , Agricultura Forestal , Redes Reguladoras de Genes , Lamiales/clasificación , Anotación de Secuencia Molecular , Fotosíntesis/genética , Filogenia , Phytoplasma/genética , Phytoplasma/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Árboles/genética , Secuenciación Completa del Genoma
7.
Gene ; 755: 144905, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32540372

RESUMEN

DNA methylation, an important epigenetic modification, regulates a wide range of biological processes. Previous MSAP results showed that the occurrence of PaWB related to changes of DNA methylation level; however, the relationship between DNA methylation and gene expression remains obscure in paulownia. Therefore, in the present study, we applied WGBS and RNA-seq techniques to investigate the DNA methylation and gene expression changes between healthy Paulownia fortunei seedlings and the phytoplasma-infected ones. A map of methylated cytosines at the single base pair resolution of paulownia was constructed. Compared to the healthy seedlings, the DNA methylation level increased after phytoplasma infection, and the change of mCHH was the main methylation pattern. DMR analysis showed that 422,662 DMRs in the genome were identified, in which, 27,871 DMR-associated genes were differentially expressed. Finally, 436 genes with significant differences in their methylation levels and mRNA expression profiles were identified through integrated analysis of the DNA methylomic and transcriptomic. KEGG pathway analysis revealed that these genes are mainly involved in plant hormone signal transduction, carbon metabolism, and starch and sucrose metabolism pathways. Two of DMR-associated genes were verified by BS- PCR. Finally, we selected TRP 1 and R2R3-MYB protein were closely related to the occurrence of PaWB. Our findings provide valuable insight into the mechanism of PaWB at the epigenetic level.


Asunto(s)
Metilación de ADN/genética , Lamiales/genética , Phytoplasma/genética , China , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Interacciones Huésped-Patógeno/genética , Infecciones/genética , Lamiales/microbiología , Magnoliopsida/genética , MicroARNs/genética , Phytoplasma/patogenicidad , Enfermedades de las Plantas/genética , Plantones/genética , Transcriptoma/genética
8.
Front Plant Sci ; 8: 342, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28344590

RESUMEN

Phytoplasma is an insect-transmitted pathogen that causes witches' broom disease in many plants. Paulownia witches' broom is one of the most destructive diseases threatening Paulownia production. The molecular mechanisms associated with this disease have been investigated by transcriptome sequencing, but changes in protein abundance have not been investigated with isobaric tags for relative and absolute quantitation. Previous results have shown that methyl methane sulfonate (MMS) can help Paulownia seedlings recover from the symptoms of witches' broom and reinstate a healthy morphology. In this study, a transcriptomic-assisted proteomic technique was used to analyze the protein changes in phytoplasma-infected Paulownia tomentosa seedlings, phytoplasma-infected seedlings treated with 20 and 60 mg·L-1 MMS, and healthy seedlings. A total of 2,051 proteins were obtained, 879 of which were found to be differentially abundant in pairwise comparisons between the sample groups. Among the differentially abundant proteins, 43 were related to Paulownia witches' broom disease and many of them were annotated to be involved in photosynthesis, expression of dwarf symptom, energy production, and cell signal pathways.

9.
Sci Rep ; 7(1): 1285, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28455522

RESUMEN

Polyploidy in plants can bestow long-term evolutionary flexibility and resistance to biotic and abiotic stresses. The upstream activation mechanisms of salt response remain unknown. Here we integrated transcriptome, miRNA and proteome data to describe the link between abscisic acid (ABA)-effectors and salt resistance against the background of Paulownia genome. Combing GO and KEGG pathway annotation of differentially expressed genes and proteins, as well as differentially expressed miRNA, these results reflect endogenous signal ABA activate the downstream effectors, such as ion channel effectors and oxido-reduction effectors, to maintain the homeostasis of Paulownia's growth. The cascaded metabolic network involved ABA biosynthesis, signaling transduction and the response of effectors. Our results will contribute to a comprehensive understanding of the genetic basis of salt tolerance, which may help to expand the available arable land for P. fortunei cultivation.


Asunto(s)
Genes de Plantas , Lamiales/genética , MicroARNs/metabolismo , ARN de Planta/metabolismo , Tolerancia a la Sal , Transcriptoma , Ácido Abscísico/biosíntesis , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Transducción de Señal
10.
Int J Genomics ; 2017: 6542075, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29038787

RESUMEN

Paulownia fortunei is a widely cultivated economic forest tree species that is susceptible to infection with phytoplasma, resulting in Paulownia witches' broom (PaWB) disease. Diseased P. fortunei is characterized by stunted growth, witches' broom, shortened internodes, and etiolated and smaller leaves. To understand the molecular mechanism of its pathogenesis, we applied isobaric tags for relative and absolute quantitation (iTRAQ) and liquid chromatography coupled with tandem mass spectrometry approaches to study changes in the proteomes of healthy P. fortunei, PaWB-infected P. fortunei, and PaWB-infected P. fortunei treated with 15 mg·L-1 or 75 mg·L-1 dimethyl sulfate. We identified 2969 proteins and 104 and 32 differentially abundant proteins that were phytoplasma infection responsive and dimethyl sulfate responsive, respectively. Based on our analysis of the different proteomes, 27 PaWB-related proteins were identified. The protein-protein interactions of these 27 proteins were analyzed and classified into four groups (photosynthesis-related, energy-related, ribosome-related, and individual proteins). These PaWB-related proteins may help in developing a deeper understanding of how PaWB affects the morphological characteristics of P. fortunei and further establish the mechanisms involved in the response of P. fortunei to phytoplasma.

11.
Genes Genomics ; 39(1): 77-86, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28090264

RESUMEN

Drought stress adversely affects plant productivity. Growth and timber production of Paulownia trees are limited under drought stress. Changes in gene expression patterns and miRNA in different ploidy of Paulownia tomentosa have been investigated. However, the responses of P. tomentosa to drought stress at the microRNA (miRNA) level have not been reported so far. To identify miRNA candidates and their target genes involved in the drought stress response in diploid and tetraploid P. tomentosa, four small RNA and four degradome libraries from diploid and autotetraploid P. tomentosa under normal and drought stress conditions were constructed and sequenced. A total of 41 conserved and 90 novel miRNAs were identified. Among these miRNAs, 67 (26 conserved and 41 novel) and 53 (six conserved and 47 novel) were significantly differentially expressed in response to drought stress in diploid and autotetraploid P. tomentosa, respectively. Degradome analysis identified 356 candidate miRNA target genes that encoded proteins with functions that included plant defense, transcriptional regulation, and hormone metabolism. In particular, miR4 and miR156 were identified only in autotetraploid P. tomentosa under drought stress. These results will help us build a foundation for future studies of the biological functions of miRNA-mediated gene regulation in P. tomentosa.

12.
PLoS One ; 9(11): e112533, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25427154

RESUMEN

Paulownia witches' broom (PaWB) caused by phytoplasma might result in devastating damage to the growth and wood production of Paulownia. To study the effect of phytoplasma on DNA sequence and to discover the genes related to PaWB occurrence, DNA polymorphisms and DNA methylation levels and patterns in PaWB seedlings, the ones treated with various concentration of methyl methane sulfonate (MMS) and healthy seedlings were investigated with amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP). Our results indicated that PaWB seedlings recovered a normal morphology, similar to healthy seedlings, after treatment with more than 20 mg · L-1 MMS; Phytoplasma infection did not change the Paulownia genomic DNA sequence at AFLP level, but changed the global DNA methylation levels and patterns; Genes related to PaWB were discovered through MSAP and validated using quantitative real-time PCR (qRT-PCR). These results implied that changes of DNA methylation levels and patterns were closely related to the morphological changes of seedlings infected with phytoplasmas.


Asunto(s)
ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Lamiaceae/genética , Proteínas de Plantas/genética , Plantones/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Metilación de ADN , ADN de Plantas/metabolismo , Epigénesis Genética , Lamiaceae/anatomía & histología , Lamiaceae/efectos de los fármacos , Lamiaceae/microbiología , Metilmetanosulfonato/farmacología , Phytoplasma/efectos de los fármacos , Phytoplasma/patogenicidad , Phytoplasma/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones/anatomía & histología , Plantones/efectos de los fármacos , Plantones/microbiología , Madera/efectos de los fármacos , Madera/microbiología
13.
Gene ; 553(2): 75-83, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25300252

RESUMEN

Paulownia is a fast-growing deciduous tree native to China. It has great economic importance for the pulp and paper industries, as well as ecological prominence in forest ecosystems. Paulownia is of much interest to plant breeder keen to explore new plant varieties by selecting on the basis of phenotype. A newly synthesized autotetraploid Paulownia exhibited advanced characteristics, such as greater yield, and higher resistance than the diploid tree. However, tissue-specific transcriptome and genomic data in public databases are not sufficient to understand the molecular mechanisms associated with genome duplication. To evaluate the effects of genome duplication on the phenotypic variations in Paulownia tomentosa×Paulownia fortunei, the transcriptomes of the autotetraploid and diploid Paulownia were compared. Using Illumina sequencing technology, a total of 82,934 All-unigenes with a mean length of 1109 bp were assembled. The data revealed numerous differences in gene expression between the two transcriptomes, including 718 up-regulated and 667 down-regulated differentially expressed genes between the two Paulownia trees. An analysis of the pathway and gene annotations revealed that genes involved in nucleotide sugar metabolism in plant cell walls were down-regulated, and genes involved in the light signal pathway and the biosynthesis of structural polymers were up-regulated in autotetraploid Paulownia. The differentially expressed genes may contribute to the observed phenotypic variations between diploid and autotetraploid Paulownia. These results provide a significant resource for understanding the variations in Paulownia polyploidization and will benefit future breeding work.


Asunto(s)
Genes de Plantas , Magnoliopsida/genética , Poliploidía , ADN Complementario , Ecosistema , Transcriptoma
14.
PLoS One ; 8(11): e80238, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278262

RESUMEN

In spite of its economic importance, very little molecular genetics and genomic research has been targeted at the family Paulownia spp. The little genetic information on this plant is a big obstacle to studying the mechanisms of its ability to resist Paulownia Witches' Broom (PaWB) disease. Analysis of the Paulownia transcriptome and its expression profile data are essential to extending the genetic resources on this species, thus will greatly improves our studies on Paulownia. In the current study, we performed the de novo assembly of a transcriptome on P. tomentosa × P. fortunei using the short-read sequencing technology (Illumina). 203,664 unigenes with a mean length of 1,328 bp was obtained. Of these unigenes, 32,976 (30% of all unigenes) containing complete structures were chosen. Eukaryotic clusters of orthologous groups, gene orthology, and the Kyoto Encyclopedia of Genes and Genomes annotations were performed of these unigenes. Genes related to PaWB disease resistance were analyzed in detail. To our knowledge, this is the first study to elucidate the genetic makeup of Paulownia. This transcriptome provides a quick way to understanding Paulownia, increases the number of gene sequences available for further functional genomics studies and provides clues to the identification of potential PaWB disease resistance genes. This study has provided a comprehensive insight into gene expression profiles at different states, which facilitates the study of each gene's roles in the developmental process and in PaWB disease resistance.


Asunto(s)
Genes de Plantas , Magnoliopsida/genética , Enfermedades de las Plantas/genética , Transcriptoma , Secuencia de Bases , Análisis por Conglomerados , Cartilla de ADN , Perfilación de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA