Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 42(6): 1676-1682, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28197854

RESUMEN

The assembly of complex I (CI) with complexes III (CIII) and IV (CIV) of the mitochondrial respiratory chain (MRC) to configure I-III- or I-III-IV-containing supercomplexes (SCs) regulates mitochondrial energy efficiency and reactive oxygen species (mROS) production. However, whether the occurrence of SCs impacts on CI specific activity remains unknown to our knowledge. To investigate this issue, here we determined CI activity in primary neurons and astrocytes, cultured under identical antioxidants-free medium, from two mouse strains (C57Bl/6 and CBA) and Wistar rat, i.e. three rodent species with or without the ability to assemble CIV into SCs. We found that CI activity was 6- or 1.8-fold higher in astrocytes than in neurons, respectively, from rat or CBA mouse, which can form I-III2-IV SC; however, CI activity was similar in the cells from C57Bl/6 mouse, which does not form I-III2-IV SC. Interestingly, CII-III activity, which was comparable in neurons and astrocytes from mice, was about 50% lower in astrocytes when compared with neurons from rat, a difference that was abolished by antioxidants- or serum-containing media. CIV and citrate synthase activities were similar under all conditions studied. Interestingly, in rat astrocytes, CI abundance in I-III2-IV SC was negligible when compared with its abundance in I-III-containing SCs. Thus, CIV-containing SCs formation may determine CI specific activity in astrocytes, which is important to understand the mechanism for CI deficiency observed in Parkinson's disease.


Asunto(s)
Encéfalo/enzimología , Complejo III de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Enfermedad de Parkinson/enzimología , Animales , Células Cultivadas , Activación Enzimática/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Mitocondrias/enzimología , Ratas , Ratas Wistar
2.
Redox Biol ; 19: 52-61, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30107295

RESUMEN

Loss of brain glutathione has been associated with cognitive decline and neuronal death during aging and neurodegenerative diseases. However, whether decreased glutathione precedes or follows neuronal dysfunction has not been unambiguously elucidated. Previous attempts to address this issue were approached by fully eliminating glutathione, a strategy causing abrupt lethality or premature neuronal death that led to multiple interpretations. To overcome this drawback, here we aimed to moderately decrease glutathione content by genetically knocking down the rate-limiting enzyme of glutathione biosynthesis in mouse neurons in vivo. Biochemical and morphological analyses of the brain revealed a modest glutathione decrease and redox stress throughout the hippocampus, although neuronal dendrite disruption and glial activation was confined to the hippocampal CA1 layer. Furthermore, the behavioral characterization exhibited signs consistent with cognitive impairment. These results indicate that the hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function.


Asunto(s)
Cognición , Dendritas/metabolismo , Glutatión/metabolismo , Hipocampo/fisiología , Neuronas/metabolismo , Animales , Dendritas/patología , Hipocampo/citología , Hipocampo/patología , Masculino , Ratones Endogámicos C57BL , Neuronas/patología , Oxidación-Reducción , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA