Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dalton Trans ; 48(31): 11781-11790, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31298239

RESUMEN

The development of novel adsorbents for the purification of natural gas from aromatic hydrocarbons and the optimization of adsorption processes represent some of the most crucial environmental challenges. In this work, two amorphous mesoporous silica (AMS) samples with different sorption characteristics were prepared by modifying the synthesis method of amorphous mesoporous silica-aluminas, and tested as adsorbents of aromatic molecules for the purification of natural gas. The physico-chemical properties of the obtained materials were finely characterized by means of different experimental techniques (including FTIR and solid-state NMR) with the aim of determining their sorption and surface features. The adsorption capacity of the produced solids towards toluene, chosen as the reference of aromatic molecules, was determined by using FTIR, solid-state NMR spectroscopy and microgravimetric analysis. Finally, in view of applications under more realistic conditions, the adsorption properties of the AMS materials were also investigated after prolonged treatments in water.

3.
ACS Appl Mater Interfaces ; 9(29): 24812-24820, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28657706

RESUMEN

A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

4.
Dalton Trans ; 43(27): 10617-27, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24835643

RESUMEN

The influence of H3BO3 on the crystallization of hybrid organic-inorganic aluminosilicates denoted as Eni Carbon Silicates (ECS's) was investigated. Syntheses were carried out at 100 °C under different experimental conditions, using bridged silsesquioxanes of general formula (EtO)3Si-R-Si(OEt)3 (R = -C6H4- (BTEB), -C10H6- (BTEN) and -C6H4-C6H4- (BTEBP)), in the presence of equimolar concentrations of NaAlO2 and H3BO3. The study, involving the synthesis of three different but structurally related phases (ECS-14 from BTEB, ECS-13 here described for the first time from BTEN, and ECS-5 from BTEBP), confirmed a catalytic role for H3BO3 which in general increased the crystallization rate and improved the product quality in terms of amount of crystallized phase (crystallinity), size of the crystallites and phase purity, while it was weakly incorporated in trace amounts in the framework of ECS's.

5.
Chem Commun (Camb) ; 48(59): 7356-8, 2012 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-22717682

RESUMEN

ECS-14, a crystalline microporous hybrid organic-inorganic aluminosilicate, has been synthesized by using 1,4-bis-(triethoxysilyl)-benzene (BTEB) as a source of silica. Its structure contains a system of linear channels with 12-membered ring openings, running along the [001] direction, resembling the pore architecture of the AFI framework type.

6.
ChemSusChem ; 1(6): 548-57, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18702154

RESUMEN

The activity of different platinum-loaded zeolites (Mordenite, ZSM-12, ZSM-5, ZSM-23) was investigated in the hydroconversion of methylcyclohexane (MCH), in the context of upgrading highly aromatic distillates for fuel blending. In all cases, conversion of MCH proceeds according to a pathway where the primary products are a mixture of dimethylcyclopentanes and ethylcyclopentane formed by isomerization and ring contraction of MCH. The primary products undergo consecutive ring-opening reactions with formation of n- and isoheptanes. The latter further react to form lower-molecular-weight n- and isoalkanes. The selectivity and distribution of products deriving from ring-contraction and ring-opening reactions are strongly affected by the pore size and topology of the zeolites. ZSM-5 exhibits a strong reactant shape-selectivity effect on ring-opening products. The evaluated zeolites show the following order of activity in the conversion of methylcyclohexane: Mordenite>ZSM-12>ZSM-5>ZSM-23.


Asunto(s)
Ciclohexanos/química , Platino (Metal)/química , Zeolitas/química , Catálisis , Concentración de Iones de Hidrógeno , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA