Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Plant Biol ; 19(1): 123, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940081

RESUMEN

BACKGROUND: Maize is a crop in high demand for food purposes and consumers worldwide are increasingly concerned with food quality. However, breeding for improved quality is a complex task and therefore developing tools to select for better quality products is of great importance. Kernel composition, flour pasting behavior, and flour particle size have been previously identified as crucial for maize-based food quality. In this work we carried out a genome-wide association study to identify genomic regions controlling compositional and pasting properties of maize wholemeal flour. RESULTS: A collection of 132 diverse inbred lines, with a considerable representation of the food used Portuguese unique germplasm, was trialed during two seasons, and harvested samples characterized for main compositional traits, flour pasting parameters and mean particle size. The collection was genotyped with the MaizeSNP50 array. SNP-trait associations were tested using a mixed linear model accounting for genetic relatedness. Fifty-seven genomic regions were identified, associated with the 11 different quality-related traits evaluated. Regions controlling multiple traits were detected and potential candidate genes identified. As an example, for two viscosity parameters that reflect the capacity of the starch to absorb water and swell, the strongest common associated region was located near the dull endosperm 1 gene that encodes a starch synthase and is determinant on the starch endosperm structure in maize. CONCLUSIONS: This study allowed for identifying relevant regions on the maize genome affecting maize kernel composition and flour pasting behavior, candidate genes for the majority of the quality-associated genomic regions, or the most promising target regions to develop molecular tools to increase efficacy and efficiency of quality traits selection (such as "breadability") within maize breeding programs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Almidón/metabolismo , Zea mays/genética , Endospermo/genética , Endospermo/metabolismo , Harina , Genómica , Genotipo , Valor Nutritivo , Fenotipo , Fitomejoramiento , Semillas/genética , Semillas/metabolismo , Zea mays/metabolismo
2.
J Food Sci Technol ; 55(3): 1056-1064, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29487448

RESUMEN

The present study was aimed at studying the physico-chemical and functional properties of 31 Portuguese common bean varieties. In addition, the whole bean flours (WBF) and starch isolates (SI) of three representative bean varieties and their rice: bean blends (70:30; 50:50) were assessed for amylose content, thermal and pasting properties in view of supplementation in rice based processed foods. Bean varieties showed significant differences in protein content (20.78-27.10%), fat content (1.16-2.18%), hydration capacity (95.90-149.30%), unhydrated seeds (4.00-40.00%), γ tocopherol (3.20-98.05 mg/100 g fat), δ tocopherol (0.06-4.72 mg/100 g fat) and pasting behavior. Amylose content of WBF (11.4-20.2%) was significantly lower than rice flour (23.51%) whereas SI of beans (40.00-47.26%) had significantly higher amylose content than SI of rice (28.13%). DSC results showed that WBF (11.4-20.2 °C) had significantly broader and lower gelatinization temperature range (∆Tr) than corresponding SI (20.9-23.1 °C). WBF had significantly lower pasting viscosity due to low starch content and compositional matrix effect as compared to SI. Setback viscosities of WBF and rice: bean blends was lower than rice flour. Low setback viscosities of rice:bean blends may be used to prevent syneresis and stabilizing the quality of frozen foods in rice based processed foods.

3.
Toxins (Basel) ; 16(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38922169

RESUMEN

Maize (Zea mays L.) stands as a vital staple food globally, holding significant nutritional and economic value. However, its susceptibility to mycotoxin contamination under stressful environmental conditions poses a considerable concern. This study aimed to assess the quality and pasting characteristics of maize varieties across two distinct regions and examine the occurrence of mycotoxins influenced by climatic factors. Five maize varieties were cultivated in triplicate in the Golegã and Coruche regions. The nutritional composition (protein, fat, fiber, ash, starch, and lutein), pasting properties, and mycotoxin levels were evaluated. A statistical analysis revealed notable differences in the nutritional profiles of the maize varieties between the two regions, particularly in the protein and lutein content. The peak viscosity ranged from 6430 to 8599 cP and from 4548 to 8178 cP in the maize varieties from the Coruche and Golegã regions, respectively. Additionally, a significant correlation was observed between the climatic conditions and the grain nutritional quality components (p < 0.05). The M variety showed the highest ash content, protein content, final viscosity, and setback viscosity and the lowest peak viscosity. The Y variety revealed the lowest fat, fiber, and lutein content and the maximum peak viscosity. The incidence of mycotoxins was notably higher in the varieties from Coruche, which was potentially attributable to higher temperatures and lower precipitation levels leading to more frequent drought conditions. Fumonisin B1 was detected in 58% of the varieties from Coruche and 33% of the samples from Golegã, while deoxynivalenol was found in 87% and 80% of the varieties from Coruche and Golegã, respectively. The H variety, which was harvested in Coruche, exhibited the highest number of fumonisins and higher amounts of protein, lutein, and fat, while fumonisins were not detected in the Golegã region, which was potentially influenced by the precipitation levels. The K variety revealed higher protein and lutein contents, a lower amount of fat, excellent pasting properties (a higher peak viscosity and holding strength and a lower peak time), and no fumonisins B1 or B2. This variety may be considered well adapted to higher temperatures and drier conditions, as verified in the Coruche region. In conclusion, our study underscored the profound impact of environmental factors on the quality and occurrence of mycotoxins in maize varieties.


Asunto(s)
Micotoxinas , Zea mays , Zea mays/química , Micotoxinas/análisis , Contaminación de Alimentos/análisis , Valor Nutritivo , Viscosidad
4.
Toxins (Basel) ; 15(2)2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36828450

RESUMEN

Maize is a significant crop to the global economy and a key component of food and feed, although grains and whole plants can often be contaminated with mycotoxins resulting in a general exposure of the population and animals. To investigate strategies for mycotoxins control at the grain production level, a pilot study and exploratory research were conducted in 2019 and 2020 to compare levels of mycotoxins in grains of plants treated with two fertilizers, F-BAC and Nefusoil, under real agricultural environment. The 1650 grains selected from the 33 samples were assessed for the presence of both Fusarium species and mycotoxins. Only fumonisins and deoxynivalenol were detected. Fumonisin B1 ranged from 0 to 2808.4 µg/Kg, and fumonisin B2 from 0 to 1041.9 µg/Kg, while deoxynivalenol variated from 0 to 465.8 µg/Kg. Nefusoil showed to be promising in regard to fumonisin control. Concerning the control of fungal contamination rate and the diversity of Fusarium species, no significant differences were found between the two treatments in any of the years. However, a tendency for was observed Nefusoil of lower values, probably due to the guaranteed less stressful conditions to the Fusarium spp. present in the soil, which do not stimulate their fumonisins production.


Asunto(s)
Fumonisinas , Fusarium , Micotoxinas , Animales , Micotoxinas/análisis , Fumonisinas/análisis , Zea mays/microbiología , Granjas , Proyectos Piloto , Contaminación de Alimentos/análisis
5.
Foods ; 12(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37107440

RESUMEN

Protein-based foods based on sweet lupine are gaining the attention of industry and consumers on account of their being one of the legumes with the highest content of proteins (28-48%). Our objective was to study the thermal properties of two lupine flours (Misak and Rumbo) and the influence of different amounts of lupine flour (0, 10, 20 and 30%) incorporations on the hydration and rheological properties of dough and bread quality. The thermograms of both lupine flours showed three peaks at 77-78 °C, 88-89 °C and 104-105 °C, corresponding to 2S, 7S and 11S globulins, respectively. For Misak flour, higher energy was needed to denature proteins in contrast to Rumbo flour, which may be due to its higher protein amount (50.7% vs. 34.2%). The water absorption of dough with 10% lupine flour was lower than the control, while higher values were obtained for dough with 20% and 30% lupine flour. In contrast, the hardness and adhesiveness of the dough were higher with 10 and 20% lupine flour, but for 30%, these values were lower than the control. However, no differences were observed for G', G″ and tan δ parameters between dough. In breads, the protein content increased ~46% with the maximum level of lupine flour, from 7.27% in wheat bread to 13.55% in bread with 30% Rumbo flour. Analyzing texture parameters, the chewiness and firmness increased with incorporations of lupine flour with respect to the control sample while the elasticity decreased, and no differences were observed for specific volume. It can be concluded that breads of good technological quality and high protein content could be obtained by the inclusion of lupine flours in wheat flour. Therefore, our study highlights the great technological aptitude and the high nutritional value of lupine flours as ingredients for the breadmaking food industry.

6.
Biomolecules ; 11(10)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34680029

RESUMEN

In Portugal, maize has been used for centuries to produce an ethnic bread called broa, employing traditional maize varieties, which are preferred by the consumers in detriment of commercial hybrids. In order to evaluate the maize volatiles that can influence consumers' acceptance of broas, twelve broas were prepared from twelve maize varieties (eleven traditional and one commercial hybrid), following a traditional recipe. All maize flours and broas were analyzed by HS-SPME-GC-MS (headspace solid-phase microextraction) and broas were appraised by a consumer sensory panel. In addition, the major soluble phenolics and total carotenoids contents were quantitated in order to evaluate their influence as precursors or inhibitors of volatile compounds. Results showed that the major volatiles detected in maize flours and broas were aldehydes and alcohols, derived from lipid oxidation, and some ketones derived from carotenoids' oxidation. Both lipid and carotenoids' oxidation reactions appeared to be inhibited by soluble phenolics. In contrast, phenolic compounds appeared to increase browning reactions during bread making and, consequently, the production of pyranones. Traditional samples, especially those with higher contents in pyranones and lower contents in aldehydes, were preferred by the consumer sensory panel. These findings suggest that, without awareness, consumers prefer broas prepared from traditional maize flours with higher contents in health-promoting phenolic compounds, reinforcing the importance of preserving these valuable genetic resources.


Asunto(s)
Pan/análisis , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles/química , Zea mays/química , Alcoholes/química , Alcoholes/aislamiento & purificación , Aldehídos/química , Aldehídos/aislamiento & purificación , Carotenoides/química , Carotenoides/aislamiento & purificación , Humanos , Cetonas/química , Cetonas/aislamiento & purificación , Lípidos/química , Lípidos/aislamiento & purificación , Oxidación-Reducción , Fenoles/química , Fenoles/aislamiento & purificación , Portugal , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/aislamiento & purificación , Zea mays/genética
7.
Foods ; 10(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572250

RESUMEN

Maize is an important worldwide commodity susceptible to fungal contamination in the field, at harvest, and during storage. This work aimed to determine the occurrence of Fusarium spp. in maize grains produced in the Tagus Valley region of Portugal and the levels of related mycotoxins in the 2018 harvest and during their storage for six months in barrels, mimicking silos conditions. Continuous monitoring of temperature, CO2, and relative humidity levels were done, as well as the concentration of mycotoxins were evaluated and correlated with the presence of Fusarium spp. F. verticillioides was identified as the predominant Fusarium species. Zearalenone, deoxynivalenol and toxin T2 were not found at harvest and after storage. Maize grains showed some variability in the levels of fumonisins (Fum B1 and Fum B2). At the harvest, fumonisin B1 ranged from 1297 to 2037 µg/kg, and fumonisin B2 ranged from 411 to 618 µg/kg. Fumonisins showed a tendency to increase (20 to 40%) during six months of storage. Although a correlation between the levels of fumonisins and the monitoring parameters was not established, CO2 levels may be used to predict fungal activity during storage. The composition of the fungal population during storage may predict the incidence of mycotoxins.

8.
Food Chem ; 306: 125509, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31627082

RESUMEN

Common beans (Phaseolus vulgaris L.), represent the most consumed legume worldwide and constitute an important source of protein, being also known to contain antinutritional compounds, which compromise nutrients' bioavailability. However, the standard methodologies to assess these constituents are time-consuming and complex. Therefore, the present study evaluated the suitability of near-infrared (NIR) and mid-infrared (MIR) spectroscopies for the development of simple and reliable methods to assess protein, lipids, tannins and phytic acid contents, besides specific amino acids, in whole bean flours. Partial least squares (PLS) regression was used to develop analytical models, and external validation was performed. NIR displayed better performance for the evaluation of protein, lipids, tannins and phytic acid contents, and MIR, for the assessment of specific amino acids. In both techniques, the use of the 1st derivative was the best data treatment. Overall, both techniques represent reliable methods to evaluate the proximate and antinutritional composition of bean flours.


Asunto(s)
Phaseolus/química , Análisis de los Mínimos Cuadrados , Ácido Fítico/análisis , Espectroscopía Infrarroja Corta/métodos , Análisis Espectral , Taninos/análisis
9.
Antioxidants (Basel) ; 9(2)2020 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-32102193

RESUMEN

Phaseolus vulgaris L. is the most commonly consumed legume in the world, given its high vegetable protein content, phenolic compounds, and antioxidant properties. It also represents one of the most sustainable, low-carbon and sources of food available at present to man. This study aims to identify the nutrients, antinutrients, phenolic composition, and antioxidant profile of 10 common bean cultivars (Arikara yellow, butter, cranberry, red kidney, navy, pinto, black, brown eyed, pink eyed, and tarrestre) from two harvest years, thereby assessing the potential of each cultivar for specific applications in the food industry. Navy and pink eyed beans showed higher potential for enrichment of foodstuffs and gluten-free products due to their higher protein and amino acid contents. Additionally, red kidney, cranberry and Arikara yellow beans had the highest content of phenolic compounds and antioxidant properties, which can act as functional ingredients in food products, thus bringing health benefits. Our study highlights the potential of using specific bean cultivars in the development of nutrient-enriched food and as functional ingredients in diets designed for disease prevention and treatment.

10.
J Agric Food Chem ; 68(13): 4051-4061, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32141752

RESUMEN

The interest in antioxidant compound breeding in maize (Zea mays L.), a major food crop, has increased in recent years. However, breeding of antioxidant compounds in maize can be hampered, given the complex genetic nature of these compounds. In this work, we followed a genome-wide association approach, using a unique germplasm collection (containing Portuguese germplasm), to study the genetic basis of several antioxidants in maize. Sixty-seven genomic regions associated with seven antioxidant compounds and two color-related traits were identified. Several significant associations were located within or near genes involved in the carotenoid (Zm00001d036345) and tocopherol biosynthetic pathways (Zm00001d017746). Some indications of a negative selection against α-tocopherol levels were detected in the Portuguese maize germplasm. The strongest single nucleotide polymorphism (SNP)-trait associations and the SNP alleles with larger effect sizes were pinpointed and set as priority for future validation studies; these associations detected now constitute a benchmark for developing molecular selection tools for antioxidant compound selection in maize.


Asunto(s)
Antioxidantes/metabolismo , Carotenoides/metabolismo , Genoma de Planta , Zea mays/genética , Alelos , Antioxidantes/análisis , Vías Biosintéticas , Carotenoides/análisis , Cromosomas de las Plantas/genética , Estudio de Asociación del Genoma Completo , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Zea mays/química , Zea mays/metabolismo
11.
Foods ; 8(11)2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766191

RESUMEN

Pea is one of the most produced and consumed pulse crops around the world. The study of genetic variability within pea germplasm is an important tool to identify outstanding accessions with optimal functional and nutritional qualities. In the present study, a collection of 105 pea accessions was analysed for physicochemical properties, pasting viscosity, and basic composition parameters. While pasting viscosities were negatively correlated to hydration capacity, cooking time, and basic composition, a positive correlation was found between the hydration capacity and the basic composition parameters. Basic composition (protein, fibre, fat, and resistant starch) parameters were further evaluated regarding seed trait morphology, namely, seed shape, colour, and surface. Allelic characterisation at the r and rb genetic loci was performed in a subgroup of 32 accessions (3 phenotyped as smooth and 29 as rough seeded), revealing that none of the initially classified rough-seeded accessions were rb mutants, 19 were r mutants, and 13 were neither r nor rb. Despite their initial phenotypic classification, the 13 accessions genetically classified as smooth behaved differently (p < 0.05) to the 19 r mutants in terms of physicochemical properties, pasting viscosity, and basic composition parameters. Using multivariate analysis of the most discriminatory parameters for the food-related traits studied, the best-performing accessions at functional and nutritional levels were identified for future plant breeding to improve field pea production and consumption.

12.
Foods ; 8(8)2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-31357747

RESUMEN

Despite the common beans' nutritional and phytochemical value, in Portugal its consumption decreased more than 50% in the last decade. The present study aimed to characterize phenolic composition of the Portuguese traditional varieties and corresponding soaked seed fractions (including soaking water). With such purpose, the phenolic composition (total content of soluble phenolics, flavonoids, and proanthocyanidins) and in vitro antioxidant activity were evaluated in the raw whole flour of 31 Portuguese common bean varieties. The phenolic composition of the soaked fractions was respectively compared to the raw flour. Phenolic compounds' identification and relative quantification were achieved by UPLC-TripleTOF-MS for one representative variety and their fractions. The highest phenolic content was found in colored varieties and the brown market class highlighted as the richest one. The loss of phenolic compounds to the soaking water was highly dependent on variety. The predominant phenolic compounds' classes were flavan-3-ols (soaking water and coats), flavonols (coats), and phenolic acids (cotyledons). This characterization study showed the diversity on the phenolic composition of Portuguese varieties and the need to adjust the soaking and peeling processes to the variety (considering the possible loss of potential health promoter compounds, e.g., phenolic compounds).

13.
Evol Appl ; 11(2): 254-270, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29387160

RESUMEN

Modern maize breeding programs gave rise to genetically uniform varieties that can affect maize's capacity to cope with increasing climate unpredictability. Maize populations, genetically more heterogeneous, can evolve and better adapt to a broader range of edaphic-climatic conditions. These populations usually suffer from low yields; it is therefore desirable to improve their agronomic performance while maintaining their valuable diversity levels. With this objective, a long-term participatory breeding/on-farm conservation program was established in Portugal. In this program, maize populations were subject to stratified mass selection. This work aimed to estimate the effect of on-farm stratified mass selection on the agronomic performance, quality, and molecular diversity of two historical maize populations. Multilocation field trials, comparing the initial populations with the derived selection cycles, showed that this selection methodology led to agronomic improvement for one of the populations. The molecular diversity analysis, using microsatellites, revealed that overall genetic diversity in both populations was maintained throughout selection. The comparison of quality parameters between the initial populations and the derived selection cycles was made using kernel from a common-garden experiment. This analysis showed that the majority of the quality traits evaluated progressed erratically over time. In conclusion, this breeding approach, through simple and low-cost methodologies, proved to be an alternative strategy for genetic resources' on-farm conservation.

14.
Front Plant Sci ; 8: 2203, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312428

RESUMEN

Previous studies have reported promising differences in the quality of kernels from farmers' maize populations collected in a Portuguese region known to produce maize-based bread. However, several limitations have been identified in the previous characterizations of those populations, such as a limited set of quality traits accessed and a missing accurate agronomic performance evaluation. The objectives of this study were to perform a more detailed quality characterization of Portuguese farmers' maize populations; to estimate their agronomic performance in a broader range of environments; and to integrate quality, agronomic, and molecular data in the setting up of decision-making tools for the establishment of a quality-oriented participatory maize breeding program. Sixteen farmers' maize populations, together with 10 other maize populations chosen for comparison purposes, were multiplied in a common-garden experiment for quality evaluation. Flour obtained from each population was used to study kernel composition (protein, fat, fiber), flour's pasting behavior, and bioactive compound levels (carotenoids, tocopherols, phenolic compounds). These maize populations were evaluated for grain yield and ear weight in nine locations across Portugal; the populations' adaptability and stability were evaluated using additive main effects and multiplication interaction (AMMI) model analysis. The phenotypic characterization of each population was complemented with a molecular characterization, in which 30 individuals per population were genotyped with 20 microsatellites. Almost all farmers' populations were clustered into the same quality-group characterized by high levels of protein and fiber, low levels of carotenoids, volatile aldehydes, α- and δ-tocopherols, and breakdown viscosity. Within this quality-group, variability on particular quality traits (color and some bioactive compounds) could still be found. Regarding the agronomic performance, farmers' maize populations had low, but considerably stable, grain yields across the tested environments. As for their genetic diversity, each farmers' population was genetically heterogeneous; nonetheless, all farmers' populations were distinct from each other's. In conclusion, and taking into consideration different quality improvement objectives, the integration of the data generated within this study allowed the outline and exploration of alternative directions for future breeding activities. As a consequence, more informed choices will optimize the use of the resources available and improve the efficiency of participatory breeding activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA