Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 20(1): 370-382, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36484496

RESUMEN

DNA viruses are responsible for many diseases in humans. Current treatments are often limited by toxicity, as in the case of cidofovir (CDV, Vistide), a compound used against cytomegalovirus (CMV) and adenovirus (AdV) infections. CDV is a polar molecule with poor bioavailability, and its overall clinical utility is limited by the high occurrence of acute nephrotoxicity. To circumvent these disadvantages, we designed nine CDV prodrug analogues. The prodrugs modulate the polarity of CDV with a long sulfonyl alkyl chain attached to one of the phosphono oxygens. We added capping groups to the end of the alkyl chain to minimize ß-oxidation and focus the metabolism on the phosphoester hydrolysis, thereby tuning the rate of this reaction by altering the alkyl chain length. With these modifications, the prodrugs have excellent aqueous solubility, optimized metabolic stability, increased cellular permeability, and rapid intracellular conversion to the pharmacologically active diphosphate form (CDV-PP). The prodrugs exhibited significantly enhanced antiviral potency against a wide range of DNA viruses in infected human foreskin fibroblasts. Single-dose intravenous and oral pharmacokinetic experiments showed that the compounds maintained plasma and target tissue levels of CDV well above the EC50 for 24 h. These experiments identified a novel lead candidate, NPP-669. NPP-669 demonstrated efficacy against CMV infections in mice and AdV infections in hamsters following oral (p.o.) dosing at a dose of 1 mg/kg BID and 0.1 mg/kg QD, respectively. We further showed that NPP-669 at 30 mg/kg QD did not exhibit histological signs of toxicity in mice or hamsters. These data suggest that NPP-669 is a promising lead candidate for a broad-spectrum antiviral compound.


Asunto(s)
Infecciones por Citomegalovirus , Organofosfonatos , Profármacos , Ratones , Humanos , Animales , Antivirales/farmacocinética , Disponibilidad Biológica , Profármacos/farmacología , Citosina , Cidofovir
2.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31484750

RESUMEN

Human norovirus (HuNoV) is a leading cause of acute gastroenteritis in both developed and developing countries. Studies of HuNoV host cell interactions are limited by the lack of a simple, robust cell culture system. Due to their diverse HuNoV-like biological features, including histo-blood group antigen (HBGA) binding, rhesus enteric caliciviruses (ReCVs) are viable surrogate models for HuNoVs. In addition, several ReCV strains can be propagated to high titers in standard nonhuman primate cell lines while causing lytic infection and cell death. To identify the ReCV entry receptor, we performed CRISPR/Cas9 library screening in Vero cells, which identified the coxsackievirus and adenovirus receptor (CAR) as a candidate ReCV entry receptor. We showed that short interfering RNA, anti-human CAR (hCAR) monoclonal antibody RmcB treatment, and recombinant hCAR ectodomain blocked ReCV replication in LLC-MK2 cells. CRISPR/Cas9-targeted knockout of CAR in LLC-MK2 and Vero cells made these cell lines resistant to ReCV infection, and susceptibility to infection could be restored by transient expression of CAR. CHO cells do not express CAR or HBGAs and are resistant to ReCV infection. Recombinant CHO cells stably expressing hCAR or the type B HBGA alone did not support ReCV infection. However, CHO cells expressing both hCAR and the type B HBGA were susceptible to ReCV infection. In summary, we have demonstrated that CAR is required for ReCV infection and most likely is a functional ReCV receptor, but HBGAs are also necessary for infection.IMPORTANCE Because of the lack of a simple and robust human norovirus (HuNoV) cell culture system surrogate, caliciviruses still represent valuable research tools for norovirus research. Due to their remarkable biological similarities to HuNoVs, including the utilization of HBGAs as putative attachment receptors, we used rhesus enteric caliciviruses (ReCVs) to study enteric calicivirus host cell interactions. Using CRISPR/Cas9 library screening and functional assays, we identified and validated the coxsackievirus and adenovirus receptor (CAR) as a functional proteinaceous receptor for ReCVs. Our work demonstrated that CAR and HBGAs both are necessary to convert a nonsusceptible cell line to being susceptible to ReCV infection. Follow-up studies to evaluate the involvement of CAR in HuNoV infections are ongoing.


Asunto(s)
Infecciones por Caliciviridae/metabolismo , Receptores Virales/metabolismo , Replicación Viral/fisiología , Infecciones por Adenoviridae/metabolismo , Animales , Células CHO , Caliciviridae/metabolismo , Chlorocebus aethiops , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/genética , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Infecciones por Coxsackievirus/metabolismo , Cricetulus , Gastroenteritis/virología , Intestino Delgado/inmunología , Macaca mulatta/inmunología , Modelos Biológicos , Norovirus/fisiología , Virus ARN/metabolismo , Receptores Virales/genética , Receptores Virales/fisiología , Células Vero , Acoplamiento Viral
3.
PLoS Pathog ; 13(8): e1006507, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28796839

RESUMEN

Cytomegalovirus (CMV) causes a persistent, lifelong infection. CMV persists in a latent state and undergoes intermittent subclinical viral reactivation that is quelled by ongoing T cell responses. While T cells are critical to maintain control of infection, the immunological factors that promote CMV persistence remain unclear. Here, we investigated the role of regulatory T cells (Treg) in a mouse model of latent CMV infection using Foxp3-diphtheria toxin receptor (Foxp3-DTR) mice. Eight months after infection, MCMV had established latency in the spleen, salivary gland, lung, and pancreas, which was accompanied by an increased frequency of Treg. Administration of diphtheria toxin (DT) after establishment of latency efficiently depleted Treg and drove a significant increase in the numbers of functional MCMV-specific CD4+ and CD8+ T cells. Strikingly, Treg depletion decreased the number of animals with reactivatable latent MCMV in the spleen. Unexpectedly, in the same animals, ablation of Treg drove a significant increase in viral reactivation in the salivary gland that was accompanied with augmented local IL-10 production by Foxp3-CD4+T cells. Further, neutralization of IL-10 after Treg depletion significantly decreased viral load in the salivary gland. Combined, these data show that Treg have divergent control of MCMV infection depending upon the tissue. In the spleen, Treg antagonize CD8+ effector function and promote viral persistence while in the salivary gland Treg prevent IL-10 production and limit viral reactivation and replication. These data provide new insights into the organ-specific roles of Treg in controlling the reactivation of latent MCMV infection.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Linfocitos T Reguladores/inmunología , Activación Viral/inmunología , Latencia del Virus/inmunología , Animales , Citomegalovirus/inmunología , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
PLoS Pathog ; 12(12): e1006069, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27926941

RESUMEN

Cytomegaloviruses (CMVs) establish chronic, systemic infections. Peripheral infection spreads via lymph nodes, which are also a focus of host defence. Thus, this is a point at which systemic infection spread might be restricted. Subcapsular sinus macrophages (SSM) captured murine CMV (MCMV) from the afferent lymph and poorly supported its replication. Blocking the type I interferon (IFN-I) receptor (IFNAR) increased MCMV infection of SSM and of the fibroblastic reticular cells (FRC) lining the subcapsular sinus, and accelerated viral spread to the spleen. Little splenic virus derived from SSM, arguing that they mainly induce an anti-viral state in the otherwise susceptible FRC. NK cells also limited infection, killing infected FRC and causing tissue damage. They acted independently of IFN-I, as IFNAR blockade increased NK cell recruitment, and NK cell depletion increased infection in IFNAR-blocked mice. Thus SSM restricted MCMV infection primarily though IFN-I, with NK cells providing a second line of defence. The capacity of innate immunity to restrict MCMV escape from the subcapsular sinus suggested that enhancing its recruitment might improve infection control.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Células Asesinas Naturales/inmunología , Ganglios Linfáticos/inmunología , Animales , Ganglios Linfáticos/virología , Macrófagos/virología , Ratones , Muromegalovirus/inmunología
5.
J Gen Virol ; 97(12): 3379-3391, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27902356

RESUMEN

Cytomegaloviruses (CMVs) establish persistent, systemic infections and cause disease by maternal-foetal transfer, suggesting that their dissemination is a key target for antiviral intervention. Late clinical presentation has meant that human CMV (HCMV) dissemination is not well understood. Murine CMV (MCMV) provides a tractable model. Whole mouse imaging of virus-expressed luciferase has proved a useful way to track systemic infections. MCMV, in which the abundant lytic gene M78 was luciferase-tagged via a self-cleaving peptide (M78-LUC), allowed serial, unbiased imaging of systemic and peripheral infection without significant virus attenuation. Ex vivo luciferase imaging showed greater sensitivity than plaque assay, and revealed both well-known infection sites (the lungs, lymph nodes, salivary glands, liver, spleen and pancreas) and less explored sites (the bone marrow and upper respiratory tract). We applied luciferase imaging to tracking MCMV lacking M33, a chemokine receptor conserved in HCMV and a proposed anti-viral drug target. M33-deficient M78-LUC colonized normally in peripheral sites and local draining lymph nodes but spread poorly to the salivary gland, suggesting a defect in vascular transport consistent with properties of a chemokine receptor.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Luciferasas/genética , Tropismo Viral , Animales , Citomegalovirus/genética , Citomegalovirus/crecimiento & desarrollo , Femenino , Genes Reporteros , Humanos , Luciferasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Imagen Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
J Virol ; 87(7): 4112-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23345521

RESUMEN

The mouse cytomegalovirus chemokine receptor homologue (CKR) M33 is required for salivary gland tropism and efficient reactivation from latency, phenotypes partially rescued by the human cytomegalovirus CKR US28. Herein, we demonstrate that complementation of salivary gland tropism is mediated predominantly by G protein-dependent signaling conserved with that of M33; in contrast, both G protein-dependent and -independent pathways contribute to the latency phenotypes. A novel M33-dependent replication phenotype in cultured bone marrow macrophages is also described.


Asunto(s)
Citomegalovirus/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Glándulas Salivales/virología , Transducción de Señal/fisiología , Tropismo Viral/fisiología , Activación Viral/fisiología , Análisis de Varianza , Animales , Células COS , Chlorocebus aethiops , Citomegalovirus/genética , Citomegalovirus/metabolismo , Células HEK293 , Humanos , Luciferasas , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Octoxinol , Fenotipo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Latencia del Virus/fisiología
7.
J Virol ; 87(7): 3930-42, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365421

RESUMEN

Immunotherapeutic herpes simplex virus 2 (HSV-2) vaccine efficacy depends upon the promotion of antigen-specific immune responses that inhibit reactivation or reactivated virus, thus controlling both recurrent lesions and viral shedding. In the present study, a candidate subunit vaccine, GEN-003/MM-2, was evaluated for its ability to induce a broad-spectrum immune response in mice and therapeutic efficacy in HSV-2-infected guinea pigs. GEN-003 is comprised of HSV-2 glycoprotein D2 (gD2ΔTMR340-363) and a truncated form of infected cell polypeptide 4 (ICP4383-766), formulated with Matrix M-2 (MM-2) adjuvant (GEN-003/MM-2). In addition to eliciting humoral immune responses, CD4(+) and CD8(+) T cells characterized by the secretion of multiple cytokines and cytolytic antigen-specific T cell responses that were able to be recalled at least 44 days after the last immunization were induced in immunized mice. Furthermore, vaccination with either GEN-003 or GEN-003/MM-2 led to significant reductions in both the prevalence and severity of lesions in HSV-2-infected guinea pigs compared to those of phosphate-buffered saline (PBS) control-vaccinated animals. While vaccination with MM-2 adjuvant alone decreased recurrent disease symptoms compared to the PBS control group, the difference was not statistically significant. Importantly, the frequency of recurrent viral shedding was considerably reduced in GEN-003/MM-2-vaccinated animals but not in GEN-003- or MM-2-vaccinated animals. These findings suggest a possible role for immunotherapeutic GEN-003/MM-2 vaccination as a viable alternative to chronic antiviral drugs in the treatment and control of genital herpes disease.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Herpes Genital/inmunología , Herpesvirus Humano 2/inmunología , Inmunoterapia/métodos , Linfocitos T/inmunología , Vacunas Virales/inmunología , Análisis de Varianza , Animales , Baculoviridae , Western Blotting , Chlorocebus aethiops , Clonación Molecular , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Ensayo de Immunospot Ligado a Enzimas , Cobayas , Herpes Genital/terapia , Ratones , Pruebas de Neutralización , Células Vero , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/farmacología , Esparcimiento de Virus/inmunología
8.
J Med Chem ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687966

RESUMEN

Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drug-drug interactions upon single-agent use of PF-07817883.

9.
Viruses ; 15(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36992420

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that infects the majority of the world population and causes lifelong latent infection. HCMV has been shown to exacerbate cardiovascular diseases, including myocarditis, vascular sclerosis, and transplant vasculopathy. Recently, we have shown that murine CMV (MCMV) recapitulates the cardiovascular dysfunction observed in patients with HCMV-induced myocarditis. To understand the viral mechanisms involved in CMV-induced heart dysfunction, we further characterized cardiac function in response to MCMV and examined virally encoded G-protein-coupled receptor homologs (vGPCRs) US28 and M33 as potential factors that promote infection in the heart. We hypothesized that the CMV-encoded vGPCRs could exacerbate cardiovascular damage and dysfunction. Three viruses were used to evaluate the role of vGPCRs in cardiac dysfunction: wild-type MCMV, a M33-deficient virus (∆M33), and a virus with the M33 open reading frame (ORF) replaced with US28, an HCMV vGPCR (i.e., US28+). Our in vivo studies revealed that M33 plays a role in promoting cardiac dysfunction by increasing viral load and heart rate during acute infection. During latency, ΔM33-infected mice demonstrated reduced calcification, altered cellular gene expression, and less cardiac hypertrophy compared with wild-type MCMV-infected mice. Ex vivo viral reactivation from hearts was less efficient in ΔM33-infected animals. HCMV protein US28 expression restored the ability of the M33-deficient virus to reactivate from the heart. US28+ MCMV infection caused damage to the heart comparable with wild-type MCMV infection, suggesting that the US28 protein is sufficient to complement the function of M33 in the heart. Altogether, these data suggest a role for vGPCRs in viral pathogenesis in the heart and thus suggest that vGPCRs promote long-term cardiac damage and dysfunction.


Asunto(s)
Infecciones por Citomegalovirus , Cardiopatías , Muromegalovirus , Miocarditis , Humanos , Animales , Ratones , Muromegalovirus/fisiología , Receptores de Quimiocina/genética , Proteínas Virales/metabolismo , Citomegalovirus/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
10.
J Virol ; 85(12): 6091-5, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21490099

RESUMEN

The human cytomegalovirus (CMV) proteins US28 and UL33 are homologous to chemokine receptors (CKRs). Knockout of the mouse CMV M33 protein (UL33 homologue) results in substantial attenuation of salivary gland infection/replication and reduced efficiency of reactivation from tissue explants. M33-mediated G protein-coupled signaling is critical for the salivary gland phenotype. In this report, we demonstrate that US28 and (to a lesser degree) UL33 restore reactivation from tissue explants and partially restore replication in salivary glands (compared to a signaling-deficient M33 mutant). These studies provide a novel small animal model for evaluation of therapies targeting the human CMV CKRs.


Asunto(s)
Citomegalovirus/fisiología , Modelos Animales de Enfermedad , Muromegalovirus/fisiología , Receptores de Quimiocina/metabolismo , Proteínas Virales/metabolismo , Animales , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Femenino , Infecciones por Herpesviridae/virología , Humanos , Ratones , Ratones Endogámicos BALB C , Muromegalovirus/genética , Muromegalovirus/metabolismo , Especificidad de Órganos , Receptores de Quimiocina/genética , Glándulas Salivales/metabolismo , Glándulas Salivales/virología , Proteínas Virales/genética , Activación Viral , Latencia del Virus , Replicación Viral
11.
PLoS One ; 17(8): e0265479, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35976883

RESUMEN

The salivary glands are a crucial site of replication for human cytomegalovirus (HCMV) and its murine counterpart, murine cytomegalovirus (MCMV). Studies of MCMV often involve the use of BALB/c strain mice, but most in vitro assays are carried out in the NIH 3T3 cell line, which is derived from Swiss Albino mice. This report describes a BALB/c-derived mouse salivary gland cell line immortalized using the SV40 large T antigen. Cells stained positive for PDGFR1 and negative for E-cadherin and PECAM-1, indicating mesenchymal origin. This cell line, which has been named murine salivary gland mesenchymal (mSGM), shows promise as a tool for ex vivo immunological assays due to its MHC haplotype match with the BALB/c mouse strain. In addition, plaque assays using mSGM rather than NIH 3T3 cells are significantly more sensitive for detecting low concentrations of MCMV particles. Finally, it is demonstrated that mSGM cells express all 3 BALB/c MHC class I isotypes and are susceptible to T cell-mediated ex vivo cytotoxicity assays, leading to many possible uses in immunological studies of MCMV.


Asunto(s)
Muromegalovirus , Animales , Citomegalovirus , Humanos , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Glándulas Salivales , Células Madre
12.
Viruses ; 14(11)2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36366414

RESUMEN

Herpes simplex virus 1 and 2 infections cause high unmet disease burdens worldwide. Mainly HSV-2 causes persistent sexually transmitted disease, fatal neonatal disease and increased transmission of HIV/AIDS. Thus, there is an urgent requirement to develop effective vaccines. We developed nucleic acid vaccines encoding a novel virus entry complex stabilising cell membrane fusion, 'virus-like membranes', VLM. Two dose intramuscular immunisations using DNA expression plasmids in a guinea pig model gave 100% protection against acute disease and significantly reduced virus replication after virus intravaginal challenge. There was also reduced establishment of latency within the dorsal root ganglia and spinal cord, but recurrent disease and recurrent virus shedding remained. To increase cellular immunity and protect against recurrent disease, cDNA encoding an inhibitor of chemokine receptors on T regulatory cells was added and compared to chemokine CCL5 effects. Immunisation including this novel human chemokine gene, newly defined splice variant from an endogenous virus genome, 'virokine immune therapeutic', VIT, protected most guinea pigs from recurrent disease and reduced recurrent virus shedding distinct from a gD protein vaccine similar to that previously evaluated in clinical trials. All DNA vaccines induced significant neutralising antibodies and warrant evaluation for new therapeutic treatments.


Asunto(s)
Herpes Genital , Vacunas de ADN , Recién Nacido , Cobayas , Humanos , Animales , Herpesvirus Humano 2/genética , Vacunas de ADN/genética , Internalización del Virus , Proteínas del Envoltorio Viral/genética , Inmunización , Quimiocinas , Modelos Animales de Enfermedad , Anticuerpos Antivirales
13.
mBio ; 13(4): e0086922, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35862764

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to represent a global health emergency as a highly transmissible, airborne virus. An important coronaviral drug target for treatment of COVID-19 is the conserved main protease (Mpro). Nirmatrelvir is a potent Mpro inhibitor and the antiviral component of Paxlovid. The significant viral sequencing effort during the ongoing COVID-19 pandemic represented a unique opportunity to assess potential nirmatrelvir escape mutations from emerging variants of SARS-CoV-2. To establish the baseline mutational landscape of Mpro prior to the introduction of Mpro inhibitors, Mpro sequences and its cleavage junction regions were retrieved from ~4,892,000 high-quality SARS-CoV-2 genomes in the open-access Global Initiative on Sharing Avian Influenza Data (GISAID) database. Any mutations identified from comparison to the reference sequence (Wuhan-Hu-1) were catalogued and analyzed. Mutations at sites key to nirmatrelvir binding and protease functionality (e.g., dimerization sites) were still rare. Structural comparison of Mpro also showed conservation of key nirmatrelvir contact residues across the extended Coronaviridae family (α-, ß-, and γ-coronaviruses). Additionally, we showed that over time, the SARS-CoV-2 Mpro enzyme remained under purifying selection and was highly conserved relative to the spike protein. Now, with the emergency use authorization (EUA) of Paxlovid and its expected widespread use across the globe, it is essential to continue large-scale genomic surveillance of SARS-CoV-2 Mpro evolution. This study establishes a robust analysis framework for monitoring emergent mutations in millions of virus isolates, with the goal of identifying potential resistance to present and future SARS-CoV-2 antivirals. IMPORTANCE The recent authorization of oral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antivirals, such as Paxlovid, has ushered in a new era of the COVID-19 pandemic. The emergence of new variants, as well as the selective pressure imposed by antiviral drugs themselves, raises concern for potential escape mutations in key drug binding motifs. To determine the potential emergence of antiviral resistance in globally circulating isolates and its implications for the clinical response to the COVID-19 pandemic, sequencing of SARS-CoV-2 viral isolates before, during, and after the introduction of new antiviral treatments is critical. The infrastructure built herein for active genetic surveillance of Mpro evolution and emergent mutations will play an important role in assessing potential antiviral resistance as the pandemic progresses and Mpro inhibitors are introduced. We anticipate our framework to be the starting point in a larger effort for global monitoring of the SARS-CoV-2 Mpro mutational landscape.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Antivirales/metabolismo , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/metabolismo , Combinación de Medicamentos , Humanos , Lactamas , Leucina , Nitrilos , Pandemias , Prolina , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Ritonavir , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo
14.
Front Immunol ; 13: 1047299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569845

RESUMEN

Introduction: Human cytomegalovirus (HCMV) is a global health threat due to its ubiquity and lifelong persistence in infected people. During latency, host CD8+ T cell responses to HCMV continue to increase in a phenomenon known as memory inflation. We used murine CMV (MCMV) as a model for HCMV to characterize the memory inflation response to wild-type MCMV (KP) and a latency-defective mutant (ΔM33stop), which lacks M33, an MCMV chemokine receptor homolog. M33 is essential for normal reactivation from latency and this was leveraged to determine whether reactivation in vivo contributes to T cell memory inflation. Methods: Mice were infected with wild-type or mutant MCMV and T cell responses were analyzed by flow cytometry at acute and latent time points. Ex vivo reactivation and cytotoxicity assays were carried out to further investigate immunity and virus replication. Quantitative reverse-transcriptase polymerase chain reaction (q-RTPCR) was used to examine gene expression during reactivation. MHC expression on infected cells was analyzed by flow cytometry. Finally, T cells were depleted from latently-infected B cell-deficient mice to examine the in vivo difference in reactivation between wild-type and ΔM33stop. Results: We found that ΔM33stop triggers memory inflation specific for peptides derived from the immediate-early protein IE1 but not the early protein m164, in contrast to wild-type MCMV. During ex vivo reactivation, gene expression in DM33stop-infected lung tissues was delayed compared to wild-type virus. Normal gene expression was partially rescued by substitution of the HCMV US28 open reading frame in place of the M33 gene. In vivo depletion of T cells in immunoglobulin heavy chain-knockout mice resulted in reactivation of wild-type MCMV, but not ΔM33stop, confirming the role of M33 during reactivation from latency. Further, we found that M33 induces isotype-specific downregulation of MHC class I on the cell surface suggesting previously unappreciated roles in immune evasion. Discussion: Our results indicate that M33 is more polyfunctional than previously appreciated. In addition to its role in reactivation, which had been previously described, we found that M33 alters viral gene expression, host T cell memory inflation, and MHC class I expression. US28 was able to partially complement most functions of M33, suggesting that its role in HCMV infection may be similarly pleotropic.


Asunto(s)
Infecciones por Citomegalovirus , Evasión Inmune , Humanos , Animales , Ratones , Latencia del Virus/fisiología , Citomegalovirus/fisiología , Receptores Acoplados a Proteínas G , Linfocitos T CD8-positivos , Infecciones por Citomegalovirus/genética
15.
Antiviral Res ; 208: 105429, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36208677

RESUMEN

Vero cells are widely used for antiviral tests and virology research for SARS-CoV-2 as well as viruses from various other families. However, Vero cells generally express high levels of multi-drug resistance 1 (MDR1) or Pgp protein, the efflux transporter of foreign substances including many antiviral compounds, affecting the antiviral activity as well as interpretation of data. To address this, a Pgp gene knockout VeroE6 cell line (VeroE6-Pgp-KO) was generated using CRISPR-CAS9 technology. These cells no longer expressed the Pgp protein as indicated by flow cytometry analysis following staining with a Pgp-specific monoclonal antibody. They also showed significantly reduced efflux transporter activity in the calcein acetoxymethyl ester (calcein AM) assay. The VeroE6-Pgp-KO cells and the parental VeroE6 cells were each infected with SARS-CoV-2 to test antiviral activities of remdesivir and nirmatrelvir, two known Pgp substrates, in the presence or absence of a Pgp inhibitor. The compounds showed antiviral activities in VeroE6-Pgp-KO cells similar to that observed in the presence of the Pgp inhibitor. Thus, the newly established VeroE6-Pgp-KO cell line adds a new in vitro virus infection system for SARS-CoV-2 and possibly other viruses to test antiviral therapies without a need to control the Pgp activity. Removal of the Pgp inhibitor for antiviral assays will lead to less data variation and prevent failed assays.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Chlorocebus aethiops , Animales , SARS-CoV-2/genética , Antivirales/farmacología , Técnicas de Inactivación de Genes , Células Vero , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Línea Celular
16.
Antimicrob Agents Chemother ; 55(1): 35-41, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21078944

RESUMEN

Cytomegalovirus (CMV) infection is the leading cause of congenital infection, producing both sensorineural hearing loss and mental retardation. We evaluated the in vivo efficacy of an orally bioavailable analog of cidofovir, hexadecyloxypropyl-cidofovir (HDP-CDV), against guinea pig CMV (GPCMV) in a guinea pig model of congenital CMV infection. HDP-CDV exhibited antiviral activity against GPCMV with a 50% effective concentration (EC(50)) of 0.004 µM ± 0.001 µM. To evaluate in vivo efficacy, pregnant Hartley guinea pigs were inoculated with GPCMV during the late second/early third trimester of gestation. Animals were administered 20 mg HDP-CDV/kg body weight orally at 24 h postinfection (hpi) and again at 7 days postinfection (dpi) or administered 4 mg/kg HDP-CDV orally each day for 5 days or 9 days. Virus levels in dam and pup tissues were evaluated following delivery, or levels from dam, placenta, and fetal tissues were evaluated following sacrifice of dams at 10 dpi. All HDP-CDV regimens significantly improved pup survival, from 50 to 60% in control animals to 93 to 100% in treated animals (P ≤ 0.019). Treatment with 20 mg/kg HDP-CDV significantly reduced the viral load in pup spleen (P = 0.017) and liver (P = 0.029). Virus levels in the placenta were significantly reduced at 10 dpi following daily treatment with 4 mg/kg HDP-CDV for 5 or 9 days. The 9-day treatment also significantly reduced the viral levels in the dam spleen and liver. Although the 4-mg/kg treatment improved pup survival, virus levels in the fetal tissues were similar to those in control tissues. Taken together, HDP-CDV shows potential as a well-tolerated antiviral candidate for treatment of congenital human CMV (HCMV) infection.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por Citomegalovirus/tratamiento farmacológico , Citosina/análogos & derivados , Organofosfonatos/uso terapéutico , Administración Oral , Animales , Antivirales/administración & dosificación , Citosina/administración & dosificación , Citosina/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Cobayas , Organofosfonatos/administración & dosificación , Embarazo , Resultado del Tratamiento
17.
J Immunol ; 183(4): 2312-20, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19620304

RESUMEN

IL-10 plays a central role in restraining the vigor of inflammatory responses, but the critical cellular sources of this counter-regulatory cytokine remain speculative in many disease models. Using a novel IL-10 transcriptional reporter mouse, we found an unexpected predominance of B cells (including plasma cells) among IL-10-expressing cells in peripheral lymphoid tissues at baseline and during diverse models of in vivo immunological challenge. Use of a novel B cell-specific IL-10 knockout mouse revealed that B cell-derived IL-10 nonredundantly decreases virus-specific CD8(+) T cell responses and plasma cell expansion during murine cytomegalovirus infection and modestly restrains immune activation after challenge with foreign Abs to IgD. In contrast, no role for B cell-derived IL-10 was evident during endotoxemia; however, although B cells dominated lymphoid tissue IL-10 production in this model, myeloid cells were dominant in blood and liver. These data suggest that B cells are an underappreciated source of counter-regulatory IL-10 production in lymphoid tissues, provide a clear rationale for testing the biological role of B cell-derived IL-10 in infectious and inflammatory disease, and underscore the utility of cell type-specific knockouts for mechanistic limning of immune counter-regulation.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Interleucina-10/fisiología , Animales , Subgrupos de Linfocitos B/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Modelos Animales de Enfermedad , Femenino , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/patología , Mediadores de Inflamación/fisiología , Interleucina-10/biosíntesis , Interleucina-10/deficiencia , Interleucina-10/genética , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Tejido Linfoide/inmunología , Tejido Linfoide/patología , Tejido Linfoide/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Muromegalovirus/inmunología , Células 3T3 NIH
18.
Pathogens ; 10(5)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069957

RESUMEN

Human Cytomegalovirus (HCMV) is a widespread pathogen that causes lifelong latent infection and is associated with the exacerbation of chronic inflammatory diseases in seropositive individuals. Of particular impact, HCMV infection is known to worsen many cardiovascular diseases including myocarditis, atherosclerosis, hypertension, and transplant vasculopathy. Due to its similarity to HCMV, murine CMV (MCMV) is an appropriate model to understand HCMV-induced pathogenesis in the heart and vasculature. MCMV shares similar sequence homology and recapitulates much of the HCMV pathogenesis, including HCMV-induced cardiovascular diseases. This review provides insight into HCMV-associated cardiovascular diseases and the murine model of MCMV infection, which has been used to study the viral pathogenesis and mechanisms contributing to cardiovascular diseases. Our new functional studies using echocardiography demonstrate tachycardia and hypertrophy in the mouse, similar to HCMV-induced myocarditis in humans. For the first time, we show long term heart dysfunction and that MCMV reactivates from latency in the heart, which raises the intriguing idea that HCMV latency and frequent virus reactivation perturbs long term cardiovascular function.

19.
J Virol Methods ; 297: 114270, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34461152

RESUMEN

Human cytomegalovirus (HCMV) is a widespread pathogen that causes lifelong latent infection in the majority of the world population. HCMV is associated with increased incidence and severity of many cardiovascular diseases including myocarditis, atherosclerosis, and transplant vasculopathy. Due to the species-restricted nature of cytomegalovirus infection, murine cytomegalovirus (MCMV) is a useful model that recapitulates many of the features of HCMV infection of the cardiovascular system. While in vivo MCMV studies are able to answer many questions regarding pathogenesis of infection, in vitro experiments using cell lines are useful tools to further understand the potential underlying mechanisms. In this study, we characterize MCMV infection of the murine aortic smooth muscle cell line (MOVAS). Our findings demonstrate that MOVAS cells are permissive for MCMV infection, form plaques under carboxymethyl cellulose overlay, and produce progeny virus similar to NIH 3T3 murine embryonic fibroblasts. In addition, MCMV infection induces calcification in MOVAS cells similar to that seen in the epicardium of MCMV-infected hearts. We conclude that MOVAS cells are a useful in vitro tool for studying CMV-mediated cardiac calcification.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Animales , Citomegalovirus , Humanos , Ratones , Ratones Endogámicos BALB C , Músculo Liso Vascular , Miocitos del Músculo Liso
20.
Science ; 374(6575): 1586-1593, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34726479

RESUMEN

The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase 1 clinical trial in healthy human participants.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Lactamas/farmacología , Lactamas/uso terapéutico , Leucina/farmacología , Leucina/uso terapéutico , Nitrilos/farmacología , Nitrilos/uso terapéutico , Prolina/farmacología , Prolina/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Inhibidores de Proteasa Viral/farmacología , Inhibidores de Proteasa Viral/uso terapéutico , Administración Oral , Animales , COVID-19/virología , Ensayos Clínicos Fase I como Asunto , Coronavirus/efectos de los fármacos , Modelos Animales de Enfermedad , Quimioterapia Combinada , Humanos , Lactamas/administración & dosificación , Lactamas/farmacocinética , Leucina/administración & dosificación , Leucina/farmacocinética , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Nitrilos/administración & dosificación , Nitrilos/farmacocinética , Prolina/administración & dosificación , Prolina/farmacocinética , Ensayos Clínicos Controlados Aleatorios como Asunto , Ritonavir/administración & dosificación , Ritonavir/uso terapéutico , SARS-CoV-2/fisiología , Inhibidores de Proteasa Viral/administración & dosificación , Inhibidores de Proteasa Viral/farmacocinética , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA