Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Environ Sci Technol ; 57(6): 2602-2610, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36734469

RESUMEN

While climate change has incentivized attention on sustainable fuel sources, algae has positioned itself as a both promising and problematic biofuel feedstock. Diseases such as fungal pathogens cause costly algal feedstock crashes, but the life cycle assessments (LCAs) used to analyze the viability of algal feedstocks for biofuel have yet to consider the impact of disease on life cycle metrics. Here, we incorporate a disease model into a well-documented LCA for algal biorefineries to compare two sustainability metrics, energy return on investment (EROI) and global warming potential (GWP). We begin by showing that failure to consider disease leads to overly optimistic LCA metric outputs. Then, we compare two leading control strategies of disease─chemical and biological. Our analyses show that biological engineering of a multispecies consortium of algae has a greater positive impact on LCA metrics than chemical control of the fungal pathogen using a fungicide. We expand how and when bi-cultures might advantageously exhibit the "dilution effect" whereby differentially susceptible species exhibit compensatory dynamics that stabilize feedstock production. Our results emphasize the impact of disease and suggest that multispecies consortia of algae can be biologically engineered to reduce greenhouse gas emissions and improve the economic viability of biofuel.


Asunto(s)
Biocombustibles , Micosis , Animales , Plantas , Calentamiento Global , Estadios del Ciclo de Vida
2.
Nature ; 549(7671): 261-264, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28869964

RESUMEN

More than 500 controlled experiments have collectively suggested that biodiversity loss reduces ecosystem productivity and stability. Yet the importance of biodiversity in sustaining the world's ecosystems remains controversial, largely because of the lack of validation in nature, where strong abiotic forcing and complex interactions are assumed to swamp biodiversity effects. Here we test this assumption by analysing 133 estimates reported in 67 field studies that statistically separated the effects of biodiversity on biomass production from those of abiotic forcing. Contrary to the prevailing opinion of the previous two decades that biodiversity would have rare or weak effects in nature, we show that biomass production increases with species richness in a wide range of wild taxa and ecosystems. In fact, after controlling for environmental covariates, increases in biomass with biodiversity are stronger in nature than has previously been documented in experiments and comparable to or stronger than the effects of other well-known drivers of productivity, including climate and nutrient availability. These results are consistent with the collective experimental evidence that species richness increases community biomass production, and suggest that the role of biodiversity in maintaining productive ecosystems should figure prominently in global change science and policy.


Asunto(s)
Animales Salvajes , Biodiversidad , Modelos Biológicos , Vida Silvestre , Animales , Organismos Acuáticos , Biomasa , Conservación de los Recursos Naturales , Política Ambiental , Reproducibilidad de los Resultados , Especificidad de la Especie
4.
J Environ Manage ; 279: 111708, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33370707

RESUMEN

This research examines public acceptability of regulations to reduce agricultural nutrient runoff and curb Harmful Algal Blooms (HABs). We tested the effects of two novel policy specific beliefs including support for farmers' autonomy and support for external accountability. We also simultaneously tested the direct and indirect effects of political orientation and environmental worldview through a Direct Effect Model and a Mediation Model using structural equation modelling. Survey data were collected from 729 Ohio residents collected in November 2018. The specific regulatory policy measure we targeted is fines on excessive agricultural runoff. As hypothesized, autonomy beliefs negatively affect, and accountability positively affect support for fines. Both models revealed good fits. the direct effects of environmental worldviews political orientation were not supported. Instead, environmental worldviews indirectly increased support for fines through increased accountability beliefs and diminished autonomy beliefs. From the results, we suggest that when proposing suitable regulations for specific sites, policy makers and interest groups should be aware of differences in public support for farmer autonomy and external accountability, and that such differences are likely rooted in environmental worldviews. The study also suggests a need for coupled ecological and social studies that assess the likelihood of regional agricultural producers voluntarily adopting conservation practices and forecast the effectiveness of potential accountability measures.


Asunto(s)
Agricultura , Agricultores , Humanos , Nutrientes , Ohio , Políticas
5.
Environ Sci Technol ; 53(15): 9279-9288, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31268697

RESUMEN

Algal biofuel has yet to realize its potential as a commercial and sustainable bioenergy source, largely due to the challenge of maximizing and sustaining biomass production with respect to energetic and material inputs in large-scale cultivation. Experimental studies have shown that multispecies algal polycultures can be designed to enhance biomass production, stability, and nutrient recycling compared to monocultures. Yet, it remains unclear whether these impacts of biodiversity make polycultures more sustainable than monocultures. Here, we present results of a comparative life cycle assessment (LCA) for algal biorefineries to compare the sustainability metrics of monocultures and polycultures of six fresh-water algal species. Our results showed that when algae were grown in outdoor experimental ponds, certain bicultures improved the energy return on investment (EROI) and greenhouse gas emissions (GHGs) by 20% and 16%, respectively, compared to the best monoculture. Bicultures outperformed monocultures by performing multiple functions simultaneously (e.g., improved stability, nutrient efficiency, biocrude characteristics), which outweighed the higher productivity attainable by a monoculture. Our results demonstrate that algal polycultures with optimized multifunctionality lead to enhanced life cycle metrics, highlighting the significant potential of ecological engineering for enabling future environmentally sustainable algal biorefineries.


Asunto(s)
Biodiversidad , Biocombustibles , Biomasa , Plantas , Reciclaje
6.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29776927

RESUMEN

Algal biofuels have the potential to curb the emissions of greenhouse gases from fossil fuels, but current growing methods fail to produce fuels that meet the multiple standards necessary for economical industrial use. For example, algae grown as monocultures for biofuel production have not simultaneously and economically achieved high yields of the high-quality lipid-rich biomass desired for the industrial-scale production of bio-oil. Decades of study in the field of ecology have demonstrated that simultaneous increases in multiple functions, such as the quantity and quality of biomass, can occur in natural ecosystems by increasing biological diversity. Here, we show that species consortia of algae can improve the production of bio-oil, which benefits from both a high biomass yield and a high quality of biomass rich in fatty acids. We explain the underlying causes of increased quantity and quality of algal biomass among species consortia by showing that, relative to monocultures, species consortia can differentially regulate lipid metabolism genes while growing to higher levels of biomass, in part due to a greater utilization of nutrient resources. We identify multiple genes involved in lipid biosynthesis that are frequently upregulated in bicultures and further show that these elevated levels of gene expression are highly predictive of the elevated levels in biculture relative to that in monoculture of multiple quality metrics of algal biomass. These results show that interactions between species can alter the expression of lipid metabolism genes and further demonstrate that our understanding of diversity-function relationships from natural ecosystems can be harnessed to improve the production of bio-oil.IMPORTANCE Algal biofuels are one of the more promising forms of renewable energy. In our study, we investigate whether ecological interactions between species of microalgae regulate two important factors in cultivation-the biomass of the crop produced and the quality of the biomass that is produced. We found that species interactions often improved production yields, especially the fatty acid content of the algal biomass, and that differentially expressed genes involved in fatty acid metabolism are predictive of improved quality metrics of bio-oil. Other studies have found that diversity often improves productivity and stability in agricultural and natural ecosystems. Our results provide further evidence that growing multispecies crops of microalgae may improve the production of high-quality biomass for bio-oil.


Asunto(s)
Biocombustibles/análisis , Chlorophyta/genética , Chlorophyta/metabolismo , Ácidos Grasos/biosíntesis , Chlorophyta/crecimiento & desarrollo , Ecología , Expresión Génica , Ingeniería Genética , Metabolismo de los Lípidos
7.
J Anim Ecol ; 87(5): 1465-1474, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29928758

RESUMEN

Understanding how biodiversity loss influences plant litter decomposition-that is, the biologically mediated conversion of coarse to fine particulate organic matter-is crucial to predict changes in the functioning of many stream ecosystems, where detrital food webs are dominant. Rates of litter decomposition are influenced by detritivore diversity, but the mechanisms behind this relationship are uncertain. As differences in detritivore body size are a major determinant of interspecific interactions, they should be key for predicting effects of detritivore diversity on decomposition. To explore this question, we manipulated detritivore diversity and body size simultaneously in a microcosm experiment using two small (Leuctra geniculata and Lepidostoma hirtum) and two large detritivore species (Sericostoma pyrenaicum and Echinogammarus berilloni) in all possible 1-, 2- and 4-species combinations, and litter discs of Alnus glutinosa. We expected that larger species would facilitate smaller species through the production of smaller litter fragments, resulting in faster decomposition and greater growth of smaller species in polycultures containing species of different body size. To examine this hypothesis, we used a set of "diversity-interaction" models that explored how decomposition was affected by different interspecific interactions and the role of body size, and quantified the magnitude of such effect through ratios of decomposition rates and detritivore growth between polycultures and monocultures. We found a clear positive effect of detritivore diversity on decomposition, which was mainly explained by facilitation and niche partitioning. Facilitation of small animals by larger ones was evidenced by a 12% increase in decomposition rates in polycultures compared to monocultures and the higher growth (20%) of small species, which partly fed on fine particulate organic matter produced by larger animals. When the large species were together in polycultures, decomposition was enhanced by 19%, but there were no changes in growth; niche partitioning was a plausible mechanism behind the increase in decomposition rates, as both species fed on different parts of litter discs, only one species being able to eat less palatable parts. Our study demonstrates that interspecific differences in body size should be taken into account in diversity-decomposition studies. Future studies should also consider differences in species' vulnerability to extinction depending on body size and how this might affect ecosystem functioning in different scenarios of detritivore diversity and more complex food webs.


Asunto(s)
Ecosistema , Hojas de la Planta , Animales , Biodiversidad , Cadena Alimentaria , Ríos
8.
Nature ; 486(7401): 59-67, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22678280

RESUMEN

The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world's nations declared that human actions were dismantling the Earth's ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.


Asunto(s)
Biodiversidad , Extinción Biológica , Actividades Humanas , Animales , Cambio Climático/estadística & datos numéricos , Consenso , Ecología/métodos , Ecología/tendencias , Humanos
9.
Nature ; 486(7401): 105-8, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22678289

RESUMEN

Evidence is mounting that extinctions are altering key processes important to the productivity and sustainability of Earth's ecosystems. Further species loss will accelerate change in ecosystem processes, but it is unclear how these effects compare to the direct effects of other forms of environmental change that are both driving diversity loss and altering ecosystem function. Here we use a suite of meta-analyses of published data to show that the effects of species loss on productivity and decomposition--two processes important in all ecosystems--are of comparable magnitude to the effects of many other global environmental changes. In experiments, intermediate levels of species loss (21-40%) reduced plant production by 5-10%, comparable to previously documented effects of ultraviolet radiation and climate warming. Higher levels of extinction (41-60%) had effects rivalling those of ozone, acidification, elevated CO(2) and nutrient pollution. At intermediate levels, species loss generally had equal or greater effects on decomposition than did elevated CO(2) and nitrogen addition. The identity of species lost also had a large effect on changes in productivity and decomposition, generating a wide range of plausible outcomes for extinction. Despite the need for more studies on interactive effects of diversity loss and environmental changes, our analyses clearly show that the ecosystem consequences of local species loss are as quantitatively significant as the direct effects of several global change stressors that have mobilized major international concern and remediation efforts.


Asunto(s)
Biodiversidad , Ecosistema , Extinción Biológica , Animales , Ecología , Modelos Biológicos
10.
Environ Sci Technol ; 51(19): 11450-11458, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28825799

RESUMEN

For algal biofuels to be economically sustainable and avoid exacerbating nutrient pollution, algal cultivation and processing must maximize rates of biofuel production while simultaneously minimizing the consumption of nitrogen (N) and phosphorus (P) fertilizers. We experimentally tested whether algal polycultures could be engineered to improve N and P nutrient-use efficiency compared to monocultures by balancing trade-offs in nutrient-use efficiency and biocrude production. We analyzed the flows of N and P through the processes of cultivation, biocrude production through hydrothermal liquefaction, and nutrient recycling in a laboratory-scale system. None of the six species we examined exhibited high N efficiency, P efficiency, and biocrude production simultaneously; each had poor performance in at least one function (i.e., <25th percentile). Polycultures of two to six species did not outperform the best species in any single function, but some polycultures exhibited more balanced performance and maintained all three functions at higher levels simultaneously than any of the monocultures (i.e., >67th percentile). Moreover, certain polycultures came closer to optimizing all three functions than any of the monocultures. By balancing trade-offs between N and P efficiency and biocrude production, polycultures could be used to simultaneously reduce the demand for both N and P fertilizers by up to 85%.


Asunto(s)
Biocombustibles , Microalgas , Biomasa , Ecología , Nitrógeno , Fósforo
11.
Nature ; 472(7341): 86-9, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21475199

RESUMEN

Excessive nutrient loading of water bodies is a leading cause of water pollution worldwide, and controlling nutrient levels in watersheds is a primary objective of most environmental policy. Over the past two decades, much research has shown that ecosystems with more species are more efficient at removing nutrients from soil and water than are ecosystems with fewer species. This has led some to suggest that conservation of biodiversity might be a useful tool for managing nutrient uptake and storage, but this suggestion has been controversial, in part because the specific biological mechanisms by which species diversity influences nutrient uptake have not been identified. Here I use a model system of stream biofilms to show that niche partitioning among species of algae can increase the uptake and storage of nitrate, a nutrient pollutant of global concern. I manipulated the number of species of algae growing in the biofilms of 150 stream mesocosms that had been set up to mimic the variety of flow habitats and disturbance regimes that are typical of natural streams. Nitrogen uptake rates, as measured by using (15)N-labelled nitrate, increased linearly with species richness and were driven by niche differences among species. As different forms of algae came to dominate each unique habitat in a stream, the more diverse communities achieved a higher biomass and greater (15)N uptake. When these niche opportunities were experimentally removed by making all of the habitats in a stream uniform, diversity did not influence nitrogen uptake, and biofilms collapsed to a single dominant species. These results provide direct evidence that communities with more species take greater advantage of the niche opportunities in an environment, and this allows diverse systems to capture a greater proportion of biologically available resources such as nitrogen. One implication is that biodiversity may help to buffer natural ecosystems against the ecological impacts of nutrient pollution.


Asunto(s)
Biodiversidad , Chlorophyta/fisiología , Diatomeas/fisiología , Ríos/química , Ríos/microbiología , Biopelículas/crecimiento & desarrollo , Biomasa , Chlorophyta/crecimiento & desarrollo , Diatomeas/crecimiento & desarrollo , Política Ambiental , Modelos Biológicos , Nitrógeno/análisis , Nitrógeno/metabolismo , Densidad de Población , Especificidad de la Especie
12.
J Great Lakes Res ; 43(3): 161-168, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30034084

RESUMEN

A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided misguided resource management decisions in the past that have resulted in legacies inherited by future generations. Given the interest in ecosystem services and lack of a coherent approach to addressing this topic in the Great Lakes, a summit was convened involving 28 experts working on various aspects of ecosystem services in the Great Lakes. The invited attendees spanned a variety of social and natural sciences. Given the unique status of the Great Lakes as the world's largest collective repository of surface freshwater, and the numerous stressors threatening this valuable resource, timing was propitious to examine ecosystem services. Several themes and recommendations emerged from the summit. There was general consensus that 1) a comprehensive inventory of ecosystem services throughout the Great Lakes is a desirable goal but would require considerable resources; 2) more spatially and temporally intensive data are needed to overcome our data gaps, but the arrangement of data networks and observatories must be well-coordinated; 3) trade-offs must be considered as part of ecosystem services analyses; and 4) formation of a Great Lakes Institute for Ecosystem Services, to provide a hub for research, meetings, and training is desirable. Several challenges also emerged during the summit, which are discussed in the paper.

13.
Proc Biol Sci ; 283(1829)2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27122551

RESUMEN

Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.


Asunto(s)
Biodegradación Ambiental , Plantas , Ríos , Biodiversidad , Biota , Ciclo del Carbono , Clima , Ecosistema , Concentración de Iones de Hidrógeno , Filogenia
14.
Ecology ; 97(1): 17-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27008770

RESUMEN

It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species. Our results suggest that plant biodiversity reduced erosion rates indirectly through positive effects on root length and number of root tips, and that interactions between legumes and non-legumes were particularly important in producing biodiversity effects. Presumably, legumes increased root production of non-legumes by increasing soil nitrogen availability due to their ability to fix atmospheric nitrogen. Our data suggest that a restoration project using species from different functional groups might provide the best insurance to maintain long-term erosion resistance.


Asunto(s)
Monitoreo del Ambiente/métodos , Fenómenos Geológicos , Plantas/clasificación , Movimientos del Agua , Biodiversidad , Modelos Logísticos , Modelos Biológicos , Dinámica Poblacional , Suelo , Especificidad de la Especie
15.
Ecology ; 97(8): 1949-1960, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27859190

RESUMEN

Global species extinction rates are orders of magnitude above the background rate documented in the fossil record. However, recent data syntheses have found mixed evidence for patterns of net species loss at local spatial scales. For example, two recent data meta-analyses have found that species richness is decreasing in some locations and is increasing in others. When these trends are combined, these papers argued there has been no net change in species richness, and suggested this pattern is globally representative of biodiversity change at local scales. Here we reanalyze results of these data syntheses and outline why this conclusion is unfounded. First, we show the datasets collated for these syntheses are spatially biased and not representative of the spatial distribution of species richness or the distribution of many primary drivers of biodiversity change. This casts doubt that their results are representative of global patterns. Second, we argue that detecting the trend in local species richness is very difficult with short time series and can lead to biased estimates of change. Reanalyses of the data detected a signal of study duration on biodiversity change, indicating net biodiversity loss is most apparent in studies of longer duration. Third, estimates of species richness change can be biased if species gains during post-disturbance recovery are included without also including species losses that occurred during the disturbance. Net species gains or losses should be assessed with respect to common baselines or reference communities. Ultimately, we need a globally coordinated effort to monitor biodiversity so that we can estimate and attribute human impacts as causes of biodiversity change. A combination of technologies will be needed to produce regularly updated global datasets of local biodiversity change to guide future policy. At this time the conclusion that there is no net change in local species richness is not the consensus state of knowledge.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Extinción Biológica , Ecología , Humanos
16.
Environ Sci Technol ; 50(23): 13142-13150, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27934263

RESUMEN

Algae-derived biocrude oil is a possible renewable energy alternative to fossil fuel based crude oil. Outdoor cultivation in raceway ponds is estimated to provide a better return on energy invested than closed photobioreactor systems. However, in these open systems, algal crops are subjected to environmental variation in temperature and irradiance, as well as biotic invasions which can cause costly crop instabilities. In this paper, we used an experimental approach to investigate the ability of species richness to maximize and stabilize biocrude production in the face of weekly temperature fluctuations between 17 and 27 °C, relative to a constant-temperature control. We hypothesized that species richness would lead to higher mean biocrude production and greater stability of biocrude production over time in the variable temperature environment. Counter to our hypothesis, species richness tended to cause a decline in mean biocrude production, regardless of environmental temperature variation. However, biodiversity did have stabilizing effects on biocrude production over time in the variable temperature environment and not in the constant temperature environment. Altogether, our results suggest that when the most productive and stable monoculture is unknown, inoculating raceway ponds with a diverse mixture of algae will tend to ensure stable harvests over time.


Asunto(s)
Microalgas , Plancton , Biodiversidad , Plantas , Temperatura
17.
Proc Biol Sci ; 282(1799): 20141745, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25473009

RESUMEN

The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively appealing, the extent to which phylogeny can predict competition and co-occurrence among species has only recently been rigorously tested, with mixed results. When studies have failed to support the CRH, critics have pointed out at least three limitations: (i) the use of data poor phylogenies that provide inaccurate estimates of species relatedness, (ii) the use of inappropriate statistical models that fail to detect relationships between relatedness and species interactions amidst nonlinearities and heteroskedastic variances, and (iii) overly simplified laboratory conditions that fail to allow eco-evolutionary relationships to emerge. Here, we address these limitations and find they do not explain why evolutionary relatedness fails to predict the strength of species interactions or probabilities of coexistence among freshwater green algae. First, we construct a new data-rich, transcriptome-based phylogeny of common freshwater green algae that are commonly cultured and used for laboratory experiments. Using this new phylogeny, we re-analyse ecological data from three previously published laboratory experiments. After accounting for the possibility of nonlinearities and heterogeneity of variances across levels of relatedness, we find no relationship between phylogenetic distance and ecological traits. In addition, we show that communities of North American green algae are randomly composed with respect to their evolutionary relationships in 99% of 1077 lakes spanning the continental United States. Together, these analyses result in one of the most comprehensive case studies of how evolutionary history influences species interactions and community assembly in both natural and experimental systems. Our results challenge the generality of the CRH and suggest it may be time to re-evaluate the validity and assumptions of this hypothesis.


Asunto(s)
Evolución Biológica , Chlorophyta/fisiología , Filogenia , Chlorophyta/genética , Ecosistema , Dinámica Poblacional , Especificidad de la Especie , Transcriptoma
18.
Am Nat ; 183(1): 1-12, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24334731

RESUMEN

The relationship between biological diversity and ecological stability has fascinated ecologists for decades. Determining the generality of this relationship, and discovering the mechanisms that underlie it, are vitally important for ecosystem management. Here, we investigate how species richness affects the temporal stability of biomass production by reanalyzing 27 recent biodiversity experiments conducted with primary producers. We find that, in grasslands, increasing species richness stabilizes whole-community biomass but destabilizes the dynamics of constituent populations. Community biomass is stabilized because species richness impacts mean biomass more strongly than its variance. In algal communities, species richness has a minimal effect on community stability because richness affects the mean and variance of biomass nearly equally. Using a new measure of synchrony among species, we find that for both grasslands and algae, temporal correlations in species biomass are lower when species are grown together in polyculture than when grown alone in monoculture. These results suggest that interspecific interactions tend to stabilize community biomass in diverse communities. Contrary to prevailing theory, we found no evidence that species' responses to environmental variation in monoculture predicted the strength of diversity's stabilizing effect. Together, these results deepen our understanding of when and why increasing species richness stabilizes community biomass.


Asunto(s)
Biodiversidad , Biomasa , Microalgas , Plantas
19.
Proc Biol Sci ; 281(1791): 20141358, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25100703

RESUMEN

Biodiversity loss--one of the most prominent forms of modern environmental change--has been heavily driven by terrestrial habitat loss and, in particular, the spread and intensification of agriculture. Expanding agricultural land-use has led to the search for strong conservation strategies, with some suggesting that biodiversity conservation in agriculture is best maximized by reducing local management intensity, such as fertilizer and pesticide application. Others highlight the importance of landscape-level approaches that incorporate natural or semi-natural areas in landscapes surrounding farms. Here, we show that both of these practices are valuable to the conservation of biodiversity, and that either local or landscape factors can be most crucial to conservation planning depending on which types of organisms one wishes to save. We performed a quantitative review of 266 observations taken from 31 studies that compared the impacts of localized (within farm) management strategies and landscape complexity (around farms) on the richness and abundance of plant, invertebrate and vertebrate species in agro-ecosystems. While both factors significantly impacted species richness, the richness of sessile plants increased with less-intensive local management, but did not significantly respond to landscape complexity. By contrast, the richness of mobile vertebrates increased with landscape complexity, but did not significantly increase with less-intensive local management. Invertebrate richness and abundance responded to both factors. Our analyses point to clear differences in how various groups of organisms respond to differing scales of management, and suggest that preservation of multiple taxonomic groups will require multiple scales of conservation.


Asunto(s)
Agricultura , Biodiversidad , Conservación de los Recursos Naturales/métodos , Animales , Invertebrados/fisiología , Fenómenos Fisiológicos de las Plantas , Vertebrados/fisiología
20.
Ecology ; 95(5): 1407-17, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25000771

RESUMEN

A longstanding concept in community ecology is that closely related species compete more strongly than distant relatives. Ecologists have invoked this "limiting similarity hypothesis" to explain patterns in the structure and function of biological communities and to inform conservation, restoration, and invasive-species management. However, few studies have empirically tested the validity of the limiting similarity hypothesis. Here we report the results of a laboratory microcosm experiment in which we used a model system of 23 common, co-occurring North American freshwater green algae to quantify the strength of 216 pairwise species' interactions (the difference in population density when grown alone vs. in the presence of another species) along a manipulated gradient of evolutionary relatedness (phylogenetic distance, as the sum of branch lengths separating species on a molecular phylogeny). Interspecific interactions varied widely in these bicultures of phytoplankton, ranging from strong competition (ratio of relative yield in polyculture vs. monoculture << 1) to moderate facilitation (relative yield > 1). Yet, we found no evidence that the strength of species' interactions was influenced by their evolutionary relatedness. There was no relationship between phylogenetic distance and the average, minimum (inferior competitor), nor maximum (superior competitor) interaction strength across all biculture communities (respectively, P = 0.19, P = 0.17, P = 0.14; N = 428). When we examined each individual species, only 17% of individual species' interactions strengths varied as a function of phylogenetic distance, and none of these relationships remained significant after Bonferoni correction for multiple tests (N = 23). Last, when we grouped interactions into five qualitatively different types, the frequency of these types was not related to phylogenetic distance among species pairs (F4,422 = 1.63, P = 0.15). Our empirical study adds to several others that suggest the biological underpinnings of competition may not be evolutionarily conserved, and thus, ecologists may need to re-evaluate the previously assumed generality of the limiting similarity hypothesis.


Asunto(s)
Evolución Biológica , Filogenia , Fitoplancton/genética , Fitoplancton/fisiología , Modelos Biológicos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA