Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 258: 113804, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31874439

RESUMEN

Our knowledge of the processes leading to the bioaccumulation of rare earth elements (REE) in aquatic biota is limited. As the contamination of freshwater ecosystems by anthropogenic REE have recently been reported, it becomes increasingly urgent to understand how these metals are transferred to freshwater organisms in order to develop appropriate guidelines. We exposed rainbow trout (Oncorhynchus mykiss) to an REE, yttrium (Y), to either a range of Y-contaminated prey (Daphnia magna) or a range of Y-contaminated water. For the feeding experiment, the relationship between the Y assimilation by O. mykiss and the Y subcellular fractionation in D. magna was evaluated. Assimilation efficiency of Y by O. mykiss was low, ranging from 0.8 to 3%. These values were close to the proportion of Y accumulated in D. magna cytosol, 0.6-2%, a theoretical trophically available fraction. Moreover, under our laboratory conditions, water appeared as a poor source of Y transfer to O. mykiss. Regardless of the source of contamination, a similar pattern of Y bioaccumulation among O. mykiss tissues was revealed: muscles < liver < gills < intestine. We conclude that the trophic transfer potential of Y is low and the evaluation of Y burden in prey cytosol appears to be a relevant predictor of Y assimilation by their consumers.


Asunto(s)
Oncorhynchus mykiss/metabolismo , Contaminantes Químicos del Agua/metabolismo , Itrio/metabolismo , Animales , Bioacumulación , Ecosistema , Branquias
2.
ACS Omega ; 4(9): 13747-13755, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31497692

RESUMEN

The demand for rare earth elements (REEs) has increased since the 1990s leading to the development of many mining projects worldwide. However, less is known about how organisms can handle these metals in natural aquatic systems. Through laboratory experiments, we assessed the chronic toxicity and subcellular fractionation of yttrium (Y), one of the four most abundant REEs, in three freshwater organisms commonly used in aquatic toxicology: Daphnia magna, Chironomus riparius, and Oncorhynchus mykiss. In bioassays using growth as an end point, C. riparius was the only organism showing toxicity at Y exposure concentrations close to environmental ones. The lowest observable effect concentrations (LOECs) of Y assessed for D. magna and O. mykiss were at least 100 times higher than the Y concentration in natural freshwater. A negative correlation between Y toxicity and water hardness was observed for D. magna. When exposed to their respective estimated LOECs, D. magna bioaccumulated 15-45 times more Y than the other two organisms exposed to their own LOECs. This former species sequestered up to 75% of Y in the NaOH-resistant fraction, a putative metal-detoxified subcellular fraction. To a lesser extent, C. riparius bioaccumulated 20-30% of Y in this detoxified fraction. In contrast, the Y subcellular distribution in O. mykiss liver did not highlight any notable detoxification strategy; Y was accumulated primarily in mitochondria (ca. 32%), a putative metal-sensitive fraction. This fraction was also the main sensitive fraction where Y accumulated in C. riparius and D. magna. Hence, the interaction of Y with mitochondria could explain its toxicity. In conclusion, there is a wide range of subcellular handling strategies for Y, with D. magna accumulating high quantities but sequestering most of it in detoxified fractions, whereas O. mykiss tending to accumulate less Y but in highly sensitive fractions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA