Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 390(17): 1549-1559, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38669354

RESUMEN

BACKGROUND: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS: No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS: Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Malaria Falciparum , Adulto , Niño , Femenino , Humanos , Masculino , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Enfermedades Endémicas/prevención & control , Inyecciones Subcutáneas , Estimación de Kaplan-Meier , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malí/epidemiología , Plasmodium falciparum , Resultado del Tratamiento , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Terapia por Observación Directa , Combinación Arteméter y Lumefantrina/administración & dosificación , Combinación Arteméter y Lumefantrina/uso terapéutico , Adulto Joven , Persona de Mediana Edad
2.
N Engl J Med ; 387(20): 1833-1842, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36317783

RESUMEN

BACKGROUND: CIS43LS is a monoclonal antibody that was shown to protect against controlled Plasmodium falciparum infection in a phase 1 clinical trial. Whether a monoclonal antibody can prevent P. falciparum infection in a region in which the infection is endemic is unknown. METHODS: We conducted a phase 2 trial to assess the safety and efficacy of a single intravenous infusion of CIS43LS against P. falciparum infection in healthy adults in Mali over a 6-month malaria season. In Part A, safety was assessed at three escalating dose levels. In Part B, participants were randomly assigned (in a 1:1:1 ratio) to receive 10 mg of CIS43LS per kilogram of body weight, 40 mg of CIS43LS per kilogram, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection detected on blood-smear examination, which was performed at least every 2 weeks for 24 weeks. At enrollment, all the participants received artemether-lumefantrine to clear possible P. falciparum infection. RESULTS: In Part B, 330 adults underwent randomization; 110 were assigned to each trial group. The risk of moderate headache was 3.3 times as high with 40 mg of CIS43LS per kilogram as with placebo. P. falciparum infections were detected on blood-smear examination in 39 participants (35.5%) who received 10 mg of CIS43LS per kilogram, 20 (18.2%) who received 40 mg of CIS43LS per kilogram, and 86 (78.2%) who received placebo. At 6 months, the efficacy of 40 mg of CIS43LS per kilogram as compared with placebo was 88.2% (adjusted 95% confidence interval [CI], 79.3 to 93.3; P<0.001), and the efficacy of 10 mg of CIS43LS per kilogram as compared with placebo was 75.0% (adjusted 95% CI, 61.0 to 84.0; P<0.001). CONCLUSIONS: CIS43LS was protective against P. falciparum infection over a 6-month malaria season in Mali without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04329104.).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antimaláricos , Malaria Falciparum , Adulto , Humanos , Antimaláricos/efectos adversos , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/diagnóstico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Malí , Plasmodium falciparum , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Cefalea/inducido químicamente
3.
N Engl J Med ; 387(5): 397-407, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35921449

RESUMEN

BACKGROUND: New approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed. METHODS: We conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight. Within 2 to 6 weeks after the administration of L9LS, both the participants who received L9LS and the control participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying Plasmodium falciparum (3D7 strain). RESULTS: No safety concerns were identified. L9LS had an estimated half-life of 56 days, and it had dose linearity, with the highest mean (±SD) maximum serum concentration (Cmax) of 914.2±146.5 µg per milliliter observed in participants who had received 20 mg per kilogram intravenously and the lowest mean Cmax of 41.5±4.7 µg per milliliter observed in those who had received 1 mg per kilogram intravenously; the mean Cmax was 164.8±31.1 in the participants who had received 5 mg per kilogram intravenously and 68.9±22.3 in those who had received 5 mg per kilogram subcutaneously. A total of 17 L9LS recipients and 6 control participants underwent controlled human malaria infection. Of the 17 participants who received a single dose of L9LS, 15 (88%) were protected after controlled human malaria infection. Parasitemia did not develop in any of the participants who received 5 or 20 mg per kilogram of intravenous L9LS. Parasitemia developed in 1 of 5 participants who received 1 mg per kilogram intravenously, 1 of 5 participants who received 5 mg per kilogram subcutaneously, and all 6 control participants through 21 days after the controlled human malaria infection. Protection conferred by L9LS was seen at serum concentrations as low as 9.2 µg per milliliter. CONCLUSIONS: In this small trial, L9LS administered intravenously or subcutaneously protected recipients against malaria after controlled infection, without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 614 ClinicalTrials.gov number, NCT05019729.).


Asunto(s)
Anticuerpos Monoclonales , Malaria , Administración Cutánea , Administración Intravenosa , Adulto , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Niño , Preescolar , Humanos , Malaria/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Parasitemia/parasitología , Plasmodium falciparum
4.
N Engl J Med ; 385(9): 803-814, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34379916

RESUMEN

BACKGROUND: Additional interventions are needed to reduce the morbidity and mortality caused by malaria. METHODS: We conducted a two-part, phase 1 clinical trial to assess the safety and pharmacokinetics of CIS43LS, an antimalarial monoclonal antibody with an extended half-life, and its efficacy against infection with Plasmodium falciparum. Part A of the trial assessed the safety, initial side-effect profile, and pharmacokinetics of CIS43LS in healthy adults who had never had malaria. Participants received CIS43LS subcutaneously or intravenously at one of three escalating dose levels. A subgroup of participants from Part A continued to Part B, and some received a second CIS43LS infusion. Additional participants were enrolled in Part B and received CIS43LS intravenously. To assess the protective efficacy of CIS43LS, some participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying P. falciparum sporozoites 4 to 36 weeks after administration of CIS43LS. RESULTS: A total of 25 participants received CIS43LS at a dose of 5 mg per kilogram of body weight, 20 mg per kilogram, or 40 mg per kilogram, and 4 of the 25 participants received a second dose (20 mg per kilogram regardless of initial dose). No safety concerns were identified. We observed dose-dependent increases in CIS43LS serum concentrations, with a half-life of 56 days. None of the 9 participants who received CIS43LS, as compared with 5 of 6 control participants who did not receive CIS43LS, had parasitemia according to polymerase-chain-reaction testing through 21 days after controlled human malaria infection. Two participants who received 40 mg per kilogram of CIS43LS and underwent controlled human malaria infection approximately 36 weeks later had no parasitemia, with serum concentrations of CIS43LS of 46 and 57 µg per milliliter at the time of controlled human malaria infection. CONCLUSIONS: Among adults who had never had malaria infection or vaccination, administration of the long-acting monoclonal antibody CIS43LS prevented malaria after controlled infection. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 612 ClinicalTrials.gov number, NCT04206332.).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antimaláricos/uso terapéutico , Malaria Falciparum/prevención & control , Adulto , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Antiprotozoarios/sangre , Antimaláricos/administración & dosificación , Antimaláricos/efectos adversos , Antimaláricos/farmacocinética , Relación Dosis-Respuesta a Droga , Voluntarios Sanos , Humanos , Infusiones Intravenosas/efectos adversos , Inyecciones Subcutáneas/efectos adversos , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Plasmodium falciparum/aislamiento & purificación
5.
J Infect Dis ; 226(3): 510-520, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35134995

RESUMEN

BACKGROUND: Effective, long-acting prevention approaches are needed to reduce human immunodeficiency virus (HIV) incidence. We evaluated the safety and pharmacokinetics of VRC07-523LS and PGT121 administered subcutaneously alone and in combination as passive immunization for young women in South Africa. METHODS: CAPRISA 012A was a randomized, double-blinded, placebo-controlled, dose-escalation phase 1 trial. We enrolled 45 HIV-negative women into 9 groups and assessed safety, tolerability, pharmacokinetics, neutralization activity, and antidrug antibody levels. Pharmacokinetic modeling was conducted to predict steady-state concentrations for 12- and 24-weekly dosing intervals. RESULTS: VRC07-523LS and PGT121, administered subcutaneously, were safe and well tolerated. Most common reactogenicity events were injection site tenderness and headaches. Nine product-related adverse events were mild and transient. Median VRC07-523LS concentrations after 20 mg/kg doses were 9.65 µg/mL and 3.86 µg/mL at 16 and 24 weeks. The median week 8 concentration after the 10 mg/kg PGT121 dose was 8.26 µg/mL. Modeling of PGT121 at 20 mg/kg showed median concentrations of 1.37 µg/mL and 0.22 µg/mL at 16 and 24 weeks. Half-lives of VRC07-523LS and PGT121 were 29 and 20 days. Both antibodies retained neutralizing activity postadministration and no antidrug antibodies were detected. CONCLUSIONS: Subcutaneous administration of VRC07-523LS in combination with optimized versions of PGT121 or other antibodies should be further assessed for HIV prevention.


Asunto(s)
Antineoplásicos Inmunológicos , Infecciones por VIH , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Femenino , VIH , Anticuerpos Anti-VIH , Humanos , Inmunización Pasiva
6.
Lancet ; 393(10174): 889-898, 2019 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-30686586

RESUMEN

BACKGROUND: mAb114 is a single monoclonal antibody that targets the receptor-binding domain of Ebola virus glycoprotein, which prevents mortality in rhesus macaques treated after lethal challenge with Zaire ebolavirus. Here we present expedited data from VRC 608, a phase 1 study to evaluate mAb114 safety, tolerability, pharmacokinetics, and immunogenicity. METHODS: In this phase 1, dose-escalation study (VRC 608), conducted at the US National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA), healthy adults aged 18-60 years were sequentially enrolled into three mAb114 dose groups of 5 mg/kg, 25 mg/kg, and 50 mg/kg. The drug was given to participants intravenously over 30 min, and participants were followed for 24 weeks. Participants were only enrolled into increased dosing groups after interim safety assessments. Our primary endpoints were safety and tolerability, with pharmacokinetic and anti-drug antibody assessments as secondary endpoints. We assessed safety and tolerability in all participants who received study drug by monitoring clinical laboratory data and self-report and direct clinician assessment of prespecified infusion-site symptoms 3 days after infusion and systemic symptoms 7 days after infusion. Unsolicited adverse events were recorded for 28 days. Pharmacokinetic and anti-drug antibody assessments were completed in participants with at least 56 days of data. This trial is registered with ClinicalTrials.gov, number NCT03478891, and is active but no longer recruiting. FINDINGS: Between May 16, and Sept 27, 2018, 19 eligible individuals were enrolled. One (5%) participant was not infused because intravenous access was not adequate. Of 18 (95%) remaining participants, three (17%) were assigned to the 5 mg/kg group, five (28%) to the 25 mg/kg group, and ten (55%) to the 50 mg/kg group, each of whom received a single infusion of mAb114 at their assigned dose. All infusions were well tolerated and completed over 30-37 min with no infusion reactions or rate adjustments. All participants who received the study drug completed the safety assessment of local and systemic reactogenicity. No participants reported infusion-site symptoms. Systemic symptoms were all mild and present only in four (22%) of 18 participants across all dosing groups. No unsolicited adverse events occurred related to mAb114 and one serious adverse event occurred that was unrelated to mAb114. mAb114 has linear pharmacokinetics and a half-life of 24·2 days (standard error of measurement 0·2) with no evidence of anti-drug antibody development. INTERPRETATION: mAb114 was well tolerated, showed linear pharmacokinetics, and was easily and rapidly infused, making it an attractive and deployable option for treatment in outbreak settings. FUNDING: Vaccine Research Center, US National Institute of Allergy and Infectious Diseases, and NIH.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacocinética , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Factores Inmunológicos/inmunología , Factores Inmunológicos/farmacocinética , Proteínas Virales/inmunología , Administración Intravenosa , Adulto , Animales , Anticuerpos Monoclonales/administración & dosificación , Relación Dosis-Respuesta a Droga , Vacunas contra el Virus del Ébola/administración & dosificación , Femenino , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Factores Inmunológicos/administración & dosificación , Macaca mulatta , Masculino , Persona de Mediana Edad , Adulto Joven
7.
JAMA ; 323(14): 1369-1377, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286643

RESUMEN

Importance: Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus prevalent worldwide. There are currently no licensed vaccines or therapies. Objective: To evaluate the safety and tolerability of an investigational CHIKV virus-like particle (VLP) vaccine in endemic regions. Design, Setting, and Participants: This was a randomized, placebo-controlled, double-blind, phase 2 clinical trial to assess the vaccine VRC-CHKVLP059-00-VP (CHIKV VLP). The trial was conducted at 6 outpatient clinical research sites located in Haiti, Dominican Republic, Martinique, Guadeloupe, and Puerto Rico. A total of 400 healthy adults aged 18 through 60 years were enrolled after meeting eligibility criteria. The first study enrollment occurred on November 18, 2015; the final study visit, March 6, 2018. Interventions: Participants were randomized 1:1 to receive 2 intramuscular injections 28 days apart (20 µg, n = 201) or placebo (n = 199) and were followed up for 72 weeks. Main Outcomes and Measures: The primary outcome was the safety (laboratory parameters, adverse events, and CHIKV infection) and tolerability (local and systemic reactogenicity) of the vaccine, and the secondary outcome was immune response by neutralization assay 4 weeks after second vaccination. Results: Of the 400 randomized participants (mean age, 35 years; 199 [50%] women), 393 (98%) completed the primary safety analysis. All injections were well tolerated. Of the 16 serious adverse events unrelated to the study drugs, 4 (25%) occurred among 4 patients in the vaccine group and 12 (75%) occurred among 11 patients in the placebo group. Of the 16 mild to moderate unsolicited adverse events that were potentially related to the drug, 12 (75%) occurred among 8 patients in the vaccine group and 4 (25%) occurred among 3 patients in the placebo group. All potentially related adverse events resolved without clinical sequelae. At baseline, there was no significant difference between the effective concentration (EC50)-which is the dilution of sera that inhibits 50% infection in viral neutralization assay-geometric mean titers (GMTs) of neutralizing antibodies of the vaccine group (46; 95% CI, 34-63) and the placebo group (43; 95% CI, 32-57). Eight weeks following the first administration, the EC50 GMT in the vaccine group was 2005 (95% CI, 1680-2392) vs 43 (95% CI, 32-58; P < .001) in the placebo group. Durability of the immune response was demonstrated through 72 weeks after vaccination. Conclusions and Relevance: Among healthy adults in a chikungunya endemic population, a virus-like particle vaccine compared with placebo demonstrated safety and tolerability. Phase 3 trials are needed to assess clinical efficacy. Trial Registration: ClinicalTrials.gov Identifier: NCT02562482.


Asunto(s)
Fiebre Chikungunya/prevención & control , Virus Chikungunya/inmunología , Vacunas de Partículas Similares a Virus/efectos adversos , Vacunas Virales/efectos adversos , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Fiebre Chikungunya/inmunología , Método Doble Ciego , Femenino , Humanos , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Adulto Joven
8.
PLoS Med ; 15(1): e1002493, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364886

RESUMEN

BACKGROUND: VRC01 is a human broadly neutralizing monoclonal antibody (bnMAb) against the CD4-binding site of the HIV-1 envelope glycoprotein (Env) that is currently being evaluated in a Phase IIb adult HIV-1 prevention efficacy trial. VRC01LS is a modified version of VRC01, designed for extended serum half-life by increased binding affinity to the neonatal Fc receptor. METHODS AND FINDINGS: This Phase I dose-escalation study of VRC01LS in HIV-negative healthy adults was conducted by the Vaccine Research Center (VRC) at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD). The age range of the study volunteers was 21-50 years; 51% of study volunteers were male and 49% were female. Primary objectives were safety and tolerability of VRC01LS intravenous (IV) infusions at 5, 20, and 40 mg/kg infused once, 20 mg/kg given three times at 12-week intervals, and subcutaneous (SC) delivery at 5 mg/kg delivered once, or three times at 12-week intervals. Secondary objectives were pharmacokinetics (PK), serum neutralization activity, and development of antidrug antibodies. Enrollment began on November 16, 2015, and concluded on August 23, 2017. This report describes the safety data for the first 37 volunteers who received administrations of VRC01LS. There were no serious adverse events (SAEs) or dose-limiting toxicities. Mild malaise and myalgia were the most common adverse events (AEs). There were six AEs assessed as possibly related to VRC01LS administration, and all were mild in severity and resolved during the study. PK data were modeled based on the first dose of VRC01LS in the first 25 volunteers to complete their schedule of evaluations. The mean (±SD) serum concentration 12 weeks after one IV administration of 20 mg/kg or 40 mg/kg were 180 ± 43 µg/mL (n = 7) and 326 ± 35 µg/mL (n = 5), respectively. The mean (±SD) serum concentration 12 weeks after one IV and SC administration of 5 mg/kg were 40 ± 3 µg/mL (n = 2) and 25 ± 5 µg/mL (n = 9), respectively. Over the 5-40 mg/kg IV dose range (n = 16), the clearance was 36 ± 8 mL/d with an elimination half-life of 71 ± 18 days. VRC01LS retained its expected neutralizing activity in serum, and anti-VRC01 antibody responses were not detected. Potential limitations of this study include the small sample size typical of Phase I trials and the need to further describe the PK properties of VRC01LS administered on multiple occasions. CONCLUSIONS: The human bnMAb VRC01LS was safe and well tolerated when delivered intravenously or subcutaneously. The half-life was more than 4-fold greater when compared to wild-type VRC01 historical data. The reduced clearance and extended half-life may make it possible to achieve therapeutic levels with less frequent and lower-dose administrations. This would potentially lower the costs of manufacturing and improve the practicality of using passively administered monoclonal antibodies (mAbs) for the prevention of HIV-1 infection. TRIAL REGISTRATION: ClinicalTrials.gov NCT02599896.


Asunto(s)
Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Anti-VIH/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos , Anticuerpos ampliamente neutralizantes , Relación Dosis-Respuesta a Droga , Femenino , Semivida , Humanos , Infusiones Intravenosas , Infusiones Subcutáneas , Masculino , Persona de Mediana Edad , Adulto Joven
9.
J Virol ; 90(13): 5899-5914, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27053554

RESUMEN

UNLABELLED: Extraordinary antibodies capable of near pan-neutralization of HIV-1 have been identified. One of the broadest is antibody 10E8, which recognizes the membrane-proximal external region (MPER) of the HIV-1 envelope and neutralizes >95% of circulating HIV-1 strains. If delivered passively, 10E8 might serve to prevent or treat HIV-1 infection. Antibody 10E8, however, is markedly less soluble than other antibodies. Here, we describe the use of both structural biology and somatic variation to develop optimized versions of 10E8 with increased solubility. From the structure of 10E8, we identified a prominent hydrophobic patch; reversion of four hydrophobic residues in this patch to their hydrophilic germ line counterparts resulted in an ∼10-fold decrease in turbidity. We also used somatic variants of 10E8, identified previously by next-generation sequencing, to optimize heavy and light chains; this process yielded several improved variants. Of these, variant 10E8v4 with 26 changes versus the parent 10E8 was the most soluble, with a paratope we showed crystallographically to be virtually identical to that of 10E8, a potency on a panel of 200 HIV-1 isolates also similar to that of 10E8, and a half-life in rhesus macaques of ∼10 days. An anomaly in 10E8v4 size exclusion chromatography that appeared to be related to conformational isomerization was resolved by engineering an interchain disulfide. Thus, by combining a structure-based approach with natural variation in potency and solubility from the 10E8 lineage, we successfully created variants of 10E8 which retained the potency and extraordinary neutralization breadth of the parent 10E8 but with substantially increased solubility. IMPORTANCE: Antibody 10E8 could be used to prevent HIV-1 infection, if manufactured and delivered economically. It suffers, however, from issues of solubility, which impede manufacturing. We hypothesized that the physical characteristic of 10E8 could be improved through rational design, without compromising breadth and potency. We used structural biology to identify hydrophobic patches on 10E8, which did not appear to be involved in 10E8 function. Reversion of hydrophobic residues in these patches to their hydrophilic germ line counterparts increased solubility. Next, clues from somatic variants of 10E8, identified by next-generation sequencing, were incorporated. A combination of structure-based design and somatic variant optimization led to 10E8v4, with substantially improved solubility and similar potency compared to the parent 10E8. The cocrystal structure of antibody 10E8v4 with its HIV-1 epitope was highly similar to that with the parent 10E8, despite 26 alterations in sequence and substantially improved solubility. Antibody 10E8v4 may be suitable for manufacturing.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Anti-VIH/química , VIH-1/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Técnicas de Química Analítica , Cristalografía por Rayos X , Disulfuros , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/metabolismo , Semivida , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Macaca mulatta , Modelos Moleculares , Solubilidad
10.
Sci Rep ; 14(1): 4534, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402303

RESUMEN

Recent work by our laboratory and others indicates that co-display of multiple antigens on protein-based nanoparticles may be key to induce cross-reactive antibodies that provide broad protection against disease. To reach the ultimate goal of a universal vaccine for seasonal influenza, a mosaic influenza nanoparticle vaccine (FluMos-v1) was developed for clinical trial (NCT04896086). FluMos-v1 is unique in that it is designed to co-display four recently circulating haemagglutinin (HA) strains; however, current vaccine analysis techniques are limited to nanoparticle population analysis, thus, are unable to determine the valency of an individual nanoparticle. For the first time, we demonstrate by total internal reflection fluorescence microscopy and supportive physical-chemical methods that the co-display of four antigens is indeed achieved in single nanoparticles. Additionally, we have determined percentages of multivalent (mosaic) nanoparticles with four, three, or two HA proteins. The integrated imaging and physicochemical methods we have developed for single nanoparticle multivalency will serve to further understand immunogenicity data from our current FluMos-v1 clinical trial.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Nanopartículas , Humanos , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Inmunogenicidad Vacunal , Gripe Humana/prevención & control , Nanopartículas/química , Ensayos Clínicos como Asunto
11.
JCI Insight ; 9(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587079

RESUMEN

BACKGROUNDBroadly neutralizing monoclonal antibodies (bNAbs) represent a promising strategy for HIV-1 immunoprophylaxis and treatment. 10E8VLS and VRC07-523LS are bNAbs that target the highly conserved membrane-proximal external region (MPER) and the CD4-binding site of the HIV-1 viral envelope glycoprotein, respectively.METHODSIn this phase 1, open-label trial, we evaluated the safety and pharmacokinetics of 5 mg/kg 10E8VLS administered alone, or concurrently with 5 mg/kg VRC07-523LS, via s.c. injection to healthy non-HIV-infected individuals.RESULTSEight participants received either 10E8VLS alone (n = 6) or 10E8VLS and VRC07-523LS in combination (n = 2). Five (n = 5 of 8, 62.5%) participants who received 10E8VLS experienced moderate local reactogenicity, and 1 participant (n = 1/8, 12.5%) experienced severe local reactogenicity. Further trial enrollment was stopped, and no participant received repeat dosing. All local reactogenicity resolved without sequelae. 10E8VLS retained its neutralizing capacity, and no functional anti-drug antibodies were detected; however, a serum t1/2 of 8.1 days was shorter than expected. Therefore, the trial was voluntarily stopped per sponsor decision (Vaccine Research Center, National Institute of Allergy and Infectious Diseases [NIAID], NIH). Mechanistic studies performed to investigate the underlying reason for the reactogenicity suggest that multiple mechanisms may have contributed, including antibody aggregation and upregulation of local inflammatory markers.CONCLUSION10E8VLS resulted in unexpected reactogenicity and a shorter t1/2 in comparison with previously tested bNAbs. These studies may facilitate identification of nonreactogenic second-generation MPER-targeting bNAbs, which could be an effective strategy for HIV-1 immunoprophylaxis and treatment.TRIAL REGISTRATIONClinicaltrials.gov, accession no. NCT03565315.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Anticuerpos Anti-VIH , Anticuerpos ampliamente neutralizantes/farmacología , Anticuerpos Monoclonales/farmacología
12.
Sci Transl Med ; 16(768): eado9026, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383243

RESUMEN

Despite effective countermeasures, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists worldwide because of its ability to diversify and evade human immunity. This evasion stems from amino acid substitutions, particularly in the receptor binding domain (RBD) of the spike protein that confers resistance to vaccine-induced antibodies and antibody therapeutics. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different RBD sites into multispecific antibodies. Here, we describe multispecific antibodies, including a trivalent trispecific antibody that potently neutralized diverse SARS-CoV-2 variants and prevented virus escape more effectively than single antibodies or mixtures of the parental antibodies. Despite being generated before the appearance of Omicron, this trispecific antibody neutralized all major Omicron variants through BA.4/BA.5 at nanomolar concentrations. Negative stain electron microscopy suggested that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated binding across more than one spike protein. Moreover, a tetravalent trispecific antibody containing the same variable regions as the trivalent trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2, and BA.5 challenge, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. These results demonstrated that multispecific antibodies have the potential to provide broad SARS-CoV-2 coverage, decrease the likelihood of escape, simplify treatment, and provide a strategy for antibody therapies that could help eliminate pandemic spread for this and other pathogens.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , Animales , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Anticuerpos Antivirales/inmunología , Ratones , Epítopos/inmunología , Mesocricetus , Cricetinae , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología
13.
NPJ Vaccines ; 9(1): 171, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289377

RESUMEN

The relative conservation of the influenza hemagglutinin (HA) stem compared to that of the immunodominant HA head makes the HA stem an attractive target for broadly protective influenza vaccines. Here we report the first-in-human, dose-escalation, open-label trial (NCT04579250) evaluating an unadjuvanted group 2 stabilized stem ferritin nanoparticle vaccine based on the H10 A/Jiangxi-Donghu/346/2013 influenza HA, H10ssF, in healthy adults. Participants received a single 20 mcg dose (n = 3) or two 60 mcg doses 16 weeks apart (n = 22). Vaccination with H10ssF was safe and well tolerated with only mild systemic and local reactogenicity reported. No serious adverse events occurred. Vaccination significantly increased homologous H10 HA stem binding and neutralizing antibodies at 2 weeks after both first and second vaccinations, and these responses remained above baseline at 40 weeks. Heterologous H3 and H7 binding antibodies also significantly increased after each vaccination and remained elevated throughout the study. These data indicate that the group 2 HA stem nanoparticle vaccine is safe and induces stem-directed binding and neutralizing antibodies.

14.
Lancet HIV ; 10(4): e230-e243, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37001964

RESUMEN

BACKGROUND: Young women in sub-Saharan Africa continue to bear a high burden of HIV infection. Combination anti-HIV monoclonal antibodies are a potential HIV prevention technology that could overcome adherence challenges of daily oral pre-exposure prophylaxis. In this phase 1 clinical trial we aimed to determine the safety and pharmacokinetic profile of the broadly neutralising monoclonal antibody CAP256V2LS. METHODS: CAPRISA 012B, a first-in-human dose-escalation phase 1 trial evaluated the safety, pharmacokinetics, and neutralisation activity of CAP256V2LS alone and in combination with VRC07-523LS in young HIV-negative women in Durban, South Africa. Groups 1 and 2 were open label with CAP256V2LS administered at 5 mg/kg and 10 mg/kg intravenously and 5 mg/kg, 10 mg/kg, and 20 mg/kg subcutaneously. In group 3, participants were randomly allocated to receive a combination of CAP256V2LS and VRC07-523LS at 10 mg/kg and 20 mg/kg subcutaneously comixed with ENHANZE, a recombinant human hyaluronidase. Once safety was established in the first three participants, dose escalation took place sequentially following review of safety data. Primary endpoints were the proportion of participants with mild, moderate, and severe reactogenicity or adverse events, graded as per the Division of AIDS toxicity grading. The trial is registered on the Pan African Clinical Trial Registry, PACTR202003767867253, and is recruiting. FINDINGS: From July 13, 2020, to Jan 13, 2021, 42 HIV-negative women, aged 18-45 years, were enrolled. All 42 participants, eight with intravenous and 34 with subcutaneous administration, completed the trial. There were no serious adverse events or dose-limiting toxicities. Most commonly reported symptoms following intravenous administration were headaches in seven (88%) and nausea in four (50%) participants. Commonly reported symptoms following subcutaneous administration were headache in 31 (91%), chills in 25 (74%), and malaise or fatigue in 19 (56%) participants. Adverse events included transient lymphocytopenia in eight (19%), proteinuria in nine (21%), elevated aspartate aminotransferase in ten (24%), and alanine aminotransferase in five (12%) participants. INTERPRETATION: CAP256V2LS administered alone and in combination with VRC07-523LS was safe with favourable pharmacokinetics and neutralisation activity, supporting further assessment in larger clinical studies. FUNDING: European and Developing Countries Clinical Trials Partnership, South African Medical Research Council, and South African Department of Science and Innovation.


Asunto(s)
Anticuerpos Monoclonales , Infecciones por VIH , Humanos , Femenino , Sudáfrica , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Administración Intravenosa
15.
BMJ Open ; 13(8): e076843, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640457

RESUMEN

INTRODUCTION: Women-controlled HIV prevention technologies that overcome adherence challenges of available daily oral pre-exposure prophylaxis and give women a choice of options are urgently needed. Broadly neutralising monoclonal antibodies (bnAbs) administered passively may offer a valuable non-antiretroviral biological intervention for HIV prevention. Animal and human studies have demonstrated that bnAbs which neutralise HIV can prevent infection. The optimal plasma antibody concentrations to confer protection against HIV infection in humans is under intense study. The Centre for the AIDS Programme of Research in South Africa (CAPRISA) 012C trial will evaluate extended safety and pharmacokinetics of CAP256V2LS and VRC07-523LS among young HIV-negative South African and Zambian women. The study design also allows for an evaluation of a signal of HIV prevention efficacy. METHODS AND ANALYSIS: CAPRISA 012 is a series of trials with three distinct protocols. The completed CAPRISA 012A and 012B phase 1 trials provided critical data for the CAPRISA 012C trial, which is divided into parts A and B. In part A, 90 participants were randomised to receive both CAP256V2LS and VRC07-523LS at 20 mg/kg or placebo, subcutaneously every 16 or 24 weeks. Part B will enrol 900 participants in South Africa and Zambia who will be randomised in a 1:1 ratio and receive an initial loading dose of 1.2 g of CAP256V2LS and VRC07-523LS or placebo followed by 600 mg of CAP256V2LS and 1.2 g of VRC07-523LS or placebo subcutaneously every 6 months. Safety will be assessed by frequency and severity of reactogenicity and other related adverse events. Pharmacokinetics of both antibodies will be measured in systemic and mucosal compartments over time, while participants will be monitored for breakthrough HIV infections. ETHICS AND DISSEMINATION OF STUDY FINDINGS: The University of KwaZulu-Natal Biomedical Research Ethics Committee and South African Health Products Regulatory Authority have approved the trial (BREC/00002492/2021, SAHPRA20210317). Results will be disseminated through conference presentations, peer-reviewed publications and the clinical trial registry. TRIAL REGISTRATION NUMBER: PACTR202112683307570.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Animales , Humanos , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Sudáfrica , Anticuerpos ampliamente neutralizantes , Anticuerpos Monoclonales , Infección Irruptiva , Ensayos Clínicos Controlados Aleatorios como Asunto , Ensayos Clínicos Fase II como Asunto
16.
MAbs ; 15(1): 2165390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36729903

RESUMEN

Antibody CAP256-VRC26.25 targets the second hypervariable region (V2) at the apex of the HIV envelope (Env) trimer with extraordinary neutralization potency, although less than optimal breadth. To improve breadth, we linked the light chain of CAP256V2LS, an optimized version of CAP256-VRC26.25 currently under clinical evaluation, to the llama nanobody J3, which has broad CD4-binding site-directed neutralization. The J3-linked bispecific antibody exhibited improved breadth and potency over both J3 and CAP256V2LS, indicative of synergistic neutralization. The cryo-EM structure of the bispecific antibody in complex with a prefusion-closed Env trimer revealed simultaneous binding of J3 and CAP256V2LS. We further optimized the pharmacokinetics of the bispecific antibody by reducing the net positive charge of J3. The optimized bispecific antibody, which we named CAP256.J3LS, had a half-life similar to CAP256V2LS in human FcRn knock-in mice and exhibited suitable auto-reactivity, manufacturability, and biophysical risk. CAP256.J3LS neutralized over 97% of a multiclade 208-strain panel (geometric mean concentration for 80% inhibition (IC80) 0.079 µg/ml) and 100% of a 100-virus clade C panel (geometric mean IC80 of 0.05 µg/ml), suggesting its anti-HIV utility especially in regions where clade C dominates.


Asunto(s)
Anticuerpos Biespecíficos , Infecciones por VIH , VIH-1 , Humanos , Animales , Ratones , Anticuerpos Neutralizantes , Pruebas de Neutralización , Anticuerpos Anti-VIH , Sitios de Unión
17.
Sci Transl Med ; 15(692): eade4790, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37075129

RESUMEN

Influenza vaccines could be improved by platforms inducing cross-reactive immunity. Immunodominance of the influenza hemagglutinin (HA) head in currently licensed vaccines impedes induction of cross-reactive neutralizing stem-directed antibodies. A vaccine without the variable HA head domain has the potential to focus the immune response on the conserved HA stem. This first-in-human dose-escalation open-label phase 1 clinical trial (NCT03814720) tested an HA stabilized stem ferritin nanoparticle vaccine (H1ssF) based on the H1 HA stem of A/New Caledonia/20/1999. Fifty-two healthy adults aged 18 to 70 years old enrolled to receive either 20 µg of H1ssF once (n = 5) or 60 µg of H1ssF twice (n = 47) with a prime-boost interval of 16 weeks. Thirty-five (74%) 60-µg dose participants received the boost, whereas 11 (23%) boost vaccinations were missed because of public health restrictions in the early stages of the COVID-19 pandemic. The primary objective of this trial was to evaluate the safety and tolerability of H1ssF, and the secondary objective was to evaluate antibody responses after vaccination. H1ssF was safe and well tolerated, with mild solicited local and systemic reactogenicity. The most common symptoms included pain or tenderness at the injection site (n = 10, 19%), headache (n = 10, 19%), and malaise (n = 6, 12%). We found that H1ssF elicited cross-reactive neutralizing antibodies against the conserved HA stem of group 1 influenza viruses, despite previous H1 subtype head-specific immunity. These responses were durable, with neutralizing antibodies observed more than 1 year after vaccination. Our results support this platform as a step forward in the development of a universal influenza vaccine.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Adolescente , Adulto , Anciano , Humanos , Persona de Mediana Edad , Adulto Joven , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Pandemias
18.
Biotechnol Prog ; 38(6): e3296, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054677

RESUMEN

Broadly neutralizing antibody (bNAb) CAP256-VRC26.25 (abbreviated CAP256LS), a human IgGI monoclonal antibody targeting the V1V2 site of the HIV-1 envelope, has demonstrated high therapeutic potential as a broadly neutralizing monoclonal antibody against HIV-1. During the process development, a heavy chain fragmentation (clipping) was observed, that led to a relative potency reduction. In this report, we highlighted a series of process and product mitigation strategies deployed to advance this product. We have detailed how analytical characterization tools, especially the microchip reduced capillary gel electrophoresis (CGE-SDS), played a pivotal role in identifying the development issues and in providing measurements to guide implementation of mitigation strategies.


Asunto(s)
Anticuerpos Anti-VIH , VIH-1 , Humanos , Anticuerpos ampliamente neutralizantes , Anticuerpos Neutralizantes , Anticuerpos Monoclonales
19.
Sci Rep ; 12(1): 8433, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589938

RESUMEN

CAP256V2LS, a broadly neutralizing monoclonal antibody (bNAb), is being pursued as a promising drug for HIV-1 prevention. The total level of tyrosine-O-sulfation, a post-translational modification, was known to play a key role for antibody biological activity. More importantly, here wedescribe for the first time the significance of the tyrosine-O-sulfation proteoforms. We developed a hydrophobic interaction chromatography (HIC) method to separate and quantify different sulfation proteoforms, which led to the direct functionality assessment of tyrosine-sulfated species. The fully sulfated (4-SO3) proteoform demonstrated the highest in vitro relative antigen binding potency and neutralization efficiency against a panel of HIV-1 viruses. Interestingly, highly variable levels of 4-SO3 were produced by different clonal CHO cell lines, which helped the bNAb process development towards production of a highly potent CAP256V2LS clinical product with high 4-SO3 proteoform. This study presents powerful insight for any biotherapeutic protein development where sulfation may play an important role in product efficacy.


Asunto(s)
VIH-1 , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Células CHO , Cricetinae , Anticuerpos Anti-VIH , Tirosina/química
20.
Lancet Infect Dis ; 22(8): 1210-1220, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35568049

RESUMEN

BACKGROUND: Western (WEEV), eastern (EEEV), and Venezuelan (VEEV) equine encephalitis viruses are mosquito-borne pathogens classified as potential biological warfare agents for which there are currently no approved human vaccines or therapies. We aimed to evaluate the safety, tolerability, and immunogenicity of an investigational trivalent virus-like particle (VLP) vaccine, western, eastern, and Venezuelan equine encephalitis (WEVEE) VLP, composed of WEEV, EEEV, and VEEV VLPs. METHODS: The WEVEE VLP vaccine was evaluated in a phase 1, randomised, open-label, dose-escalation trial at the Hope Clinic of the Emory Vaccine Center at Emory University, Atlanta, GA, USA. Eligible participants were healthy adults aged 18-50 years with no previous vaccination history with an investigational alphavirus vaccine. Participants were assigned to a dose group of 6 µg, 30 µg, or 60 µg vaccine product and were randomly assigned (1:1) to receive the WEVEE VLP vaccine with or without aluminium hydroxide suspension (alum) adjuvant by intramuscular injection at study day 0 and at week 8. The primary outcomes were the safety and tolerability of the vaccine (assessed in all participants who received at least one administration of study product) and the secondary outcome was immune response measured as neutralising titres by plaque reduction neutralisation test (PRNT) 4 weeks after the second vaccination. This trial is registered at ClinicalTrials.gov, NCT03879603. FINDINGS: Between April 2, 2019, and June 13, 2019, 30 trial participants were enrolled (mean age 32 years, range 21-48; 16 [53%] female participants and 14 [47%] male participants). Six groups of five participants each received 6 µg, 30 µg, or 60 µg vaccine doses with or without adjuvant, and all 30 participants completed study follow-up. Vaccinations were safe and well tolerated. The most frequently reported symptoms were mild injection-site pain and tenderness (22 [73%] of 30) and malaise (15 [50%] of 30). Dose-dependent differences in the frequency of pain and tenderness were found between the 6 µg, 30 µg, and 60 µg groups (p=0·0217). No significant differences were observed between dosing groups for any other reactogenicity symptom. Two adverse events (mild elevated blood pressure and moderate asymptomatic neutropenia) were assessed as possibly related to the study product in one trial participant (60 µg dose with alum); both resolved without clinical sequelae. 4 weeks after second vaccine administration, neutralising antibodies were induced in all study groups with the highest response seen against all three vaccine antigens in the 30 µg plus alum group (PRNT80 geometric mean titre for EEEV 60·8, 95% CI 29·9-124·0; for VEEV 111·5, 49·8-249·8; and for WEEV 187·9, 90·0-392·2). Finally, 4 weeks after second vaccine administration, for all doses, the majority of trial participants developed an immune response to all three vaccine components (24 [83%] of 29 for EEEV; 26 [90%] of 29 for VEEV; 27 [93%] of 29 for WEEV; and 22 [76%] of 29 for EEEV, VEEV, and WEEV combined). INTERPRETATION: The favourable safety profile and neutralising antibody responses, along with pressing public health need, support further evaluation of the WEVEE VLP vaccine in advanced-phase clinical trials. FUNDING: The Vaccine Research Center of the National Institute of Allergy and Infectious Diseases, National Institutes of Health funded the clinical trial. The US Department of Defense contributed funding for manufacturing of the study product.


Asunto(s)
Alphavirus , Virus de la Encefalitis Equina Venezolana , Vacunas de Partículas Similares a Virus , Adyuvantes Inmunológicos , Adulto , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Método Doble Ciego , Femenino , Caballos , Humanos , Inmunogenicidad Vacunal , Masculino , Persona de Mediana Edad , Dolor , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA