Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 83(9): 1462-1473.e5, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37116493

RESUMEN

DNA binding domains (DBDs) of transcription factors (TFs) recognize DNA sequence motifs that are highly abundant in genomes. Within cells, TFs bind a subset of motif-containing sites as directed by either their DBDs or DBD-external (nonDBD) sequences. To define the relative roles of DBDs and nonDBDs in directing binding preferences, we compared the genome-wide binding of 48 (∼30%) budding yeast TFs with their DBD-only, nonDBD-truncated, and nonDBD-only mutants. With a few exceptions, binding locations differed between DBDs and TFs, resulting from the cumulative action of multiple determinants mapped mostly to disordered nonDBD regions. Furthermore, TFs' preferences for promoters of the fuzzy nucleosome architecture were lost in DBD-only mutants, whose binding spread across promoters, implicating nonDBDs' preferences in this hallmark of budding yeast regulatory design. We conclude that DBDs and nonDBDs employ complementary DNA-targeting strategies, whose balance defines TF binding specificity along genomes.


Asunto(s)
ADN , Factores de Transcripción , Sitios de Unión , Factores de Transcripción/metabolismo , Unión Proteica , ADN/genética
2.
Mol Cell ; 79(3): 459-471.e4, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32553192

RESUMEN

Transcription factors (TFs) that bind common DNA motifs in vitro occupy distinct sets of promoters in vivo, raising the question of how binding specificity is achieved. TFs are enriched with intrinsically disordered regions (IDRs). Such regions commonly form promiscuous interactions, yet their unique properties might also benefit specific binding-site selection. We examine this using Msn2 and Yap1, TFs of distinct families that contain long IDRs outside their DNA-binding domains. We find that these IDRs are both necessary and sufficient for localizing to the majority of target promoters. This IDR-directed binding does not depend on any localized domain but results from a multitude of weak determinants distributed throughout the entire IDR sequence. Furthermore, IDR specificity is conserved between distant orthologs, suggesting direct interaction with multiple promoters. We propose that distribution of sensing determinants along extended IDRs accelerates binding-site detection by rapidly localizing TFs to broad DNA regions surrounding these sites.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/genética , Motivos de Nucleótidos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Factores de Transcripción/genética , Sitios de Unión , Biología Computacional/métodos , Secuencia Conservada , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Estadísticos , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Transcripción/química , Factores de Transcripción/metabolismo
3.
Nucleic Acids Res ; 52(5): 2260-2272, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38109289

RESUMEN

Intrinsically disordered regions (IDRs) are abundant in eukaryotic proteins, but their sequence-function relationship remains poorly understood. IDRs of transcription factors (TFs) can direct promoter selection and recruit coactivators, as shown for the budding yeast TF Msn2. To examine how IDRs encode both these functions, we compared genomic binding specificity, coactivator recruitment, and gene induction amongst a large set of designed Msn2-IDR mutants. We find that both functions depend on multiple regions across the > 600AA IDR. Yet, transcription activity was readily disrupted by mutations that showed no effect on the Msn2 binding specificity. Our data attribute this differential sensitivity to the integration of a relaxed, composition-based code directing binding specificity with a more stringent, motif-based code controlling the recruitment of coactivators and transcription activity. Therefore, Msn2 utilizes interwoven sequence grammars for encoding multiple functions, suggesting a new IDR design paradigm of potentially general use.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Intrínsecamente Desordenadas , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción , Regulación de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Mutación , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo
4.
Nucleic Acids Res ; 52(10): 5720-5731, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597680

RESUMEN

The Origin Recognition Complex (ORC) seeds replication-fork formation by binding to DNA replication origins, which in budding yeast contain a 17bp DNA motif. High resolution structure of the ORC-DNA complex revealed two base-interacting elements: a disordered basic patch (Orc1-BP4) and an insertion helix (Orc4-IH). To define the ORC elements guiding its DNA binding in vivo, we mapped genomic locations of 38 designed ORC mutants, revealing that different ORC elements guide binding at different sites. At silencing-associated sites lacking the motif, ORC binding and activity were fully explained by a BAH domain. Within replication origins, we reveal two dominating motif variants showing differential binding modes and symmetry: a non-repetitive motif whose binding requires Orc1-BP4 and Orc4-IH, and a repetitive one where another basic patch, Orc1-BP3, can replace Orc4-IH. Disordered basic patches are therefore key for ORC-motif binding in vivo, and we discuss how these conserved, minor-groove interacting elements can guide specific ORC-DNA recognition.


Asunto(s)
Complejo de Reconocimiento del Origen , Origen de Réplica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sitios de Unión , Replicación del ADN , ADN de Hongos/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , Mutación , Motivos de Nucleótidos , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/química , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
5.
Nucleic Acids Res ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38908024

RESUMEN

Intrinsically disordered regions (IDRs) guide transcription factors (TFs) to their genomic binding sites, raising the question of how structure-lacking regions encode for complex binding patterns. We investigated this using the TF Gln3, revealing sets of IDR-embedded determinants that direct Gln3 binding to respective groups of functionally related promoters, and enable tuning binding preferences between environmental conditions, phospho-mimicking mutations, and orthologs. Through targeted mutations, we defined the role of short linear motifs (SLiMs) and co-binding TFs (Hap2) in stabilizing Gln3 at respiration-chain promoters, while providing evidence that Gln3 binding at nitrogen-associated promoters is encoded by the IDR amino-acid composition, independent of SLiMs or co-binding TFs. Therefore, despite their apparent simplicity, TF IDRs can direct and regulate complex genomic binding patterns through a combination of SLiM-mediated and composition-encoded interactions.

6.
Nucleic Acids Res ; 51(10): 4831-4844, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-36938874

RESUMEN

Intrinsically disordered regions (IDRs) direct transcription factors (TFs) towards selected genomic occurrences of their binding motif, as exemplified by budding yeast's Msn2. However, the sequence basis of IDR-directed TF binding selectivity remains unknown. To reveal this sequence grammar, we analyze the genomic localizations of >100 designed IDR mutants, each carrying up to 122 mutations within this 567-AA region. Our data points at multivalent interactions, carried by hydrophobic-mostly aliphatic-residues dispersed within a disordered environment and independent of linear sequence motifs, as the key determinants of Msn2 genomic localization. The implications of our results for the mechanistic basis of IDR-based TF binding preferences are discussed.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción , Genómica , Proteínas Intrínsecamente Desordenadas/química , Mutación , Unión Proteica , Factores de Transcripción/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Genome Res ; 31(3): 426-435, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33563717

RESUMEN

The wrapping of DNA around histone octamers challenges processes that use DNA as their template. In vitro, DNA replication through chromatin depends on histone modifiers, raising the possibility that cells modify histones to optimize fork progression. Rtt109 is an acetyl transferase that acetylates histone H3 before its DNA incorporation on the K56 and N-terminal residues. We previously reported that, in budding yeast, a wave of histone H3 K9 acetylation progresses ∼3-5 kb ahead of the replication fork. Whether this wave contributes to replication dynamics remained unknown. Here, we show that the replication fork velocity increases following deletion of RTT109, the gene encoding the enzyme required for the prereplication H3 acetylation wave. By using histone H3 mutants, we find that Rtt109-dependent N-terminal acetylation regulates fork velocity, whereas K56 acetylation contributes to replication dynamics only when N-terminal acetylation is compromised. We propose that acetylation of newly synthesized histones slows replication by promoting replacement of nucleosomes evicted by the incoming fork, thereby protecting genome integrity.


Asunto(s)
Replicación del ADN , Histona Acetiltransferasas/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Histonas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
8.
PLoS Biol ; 17(11): e3000289, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31756183

RESUMEN

Gene duplication promotes adaptive evolution in two main ways: allowing one duplicate to evolve a new function and splitting ancestral functions between the duplicates. The second scenario may resolve adaptive conflicts that can rise when one gene performs different functions. In an apparent departure from both scenarios, low-expressing transcription factor (TF) duplicates commonly bind to the same DNA motifs and act in overlapping conditions. To examine for possible benefits of this apparent redundancy, we examined the Msn2 and Msn4 duplicates in budding yeast. We show that Msn2,4 function as one unit by inducing the same set of target genes in overlapping conditions. Yet, the two-factor composition allows this unit's expression to be both environmentally responsive and with low noise, resolving an adaptive conflict that limits expression of single genes. We propose that duplication can provide adaptive benefit through cooperation rather than functional divergence, allowing two-factor dynamics with beneficial properties that cannot be achieved by a single gene.


Asunto(s)
Proteínas de Unión al ADN/genética , Duplicación de Gen , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Genes Duplicados , Distribución de Poisson , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
9.
Genome Res ; 27(2): 310-319, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28028072

RESUMEN

Eukaryotic cells initiate DNA synthesis by sequential firing of hundreds of origins. This ordered replication is described by replication profiles, which measure the DNA content within a cell population. Here, we show that replication dynamics can be deduced from replication profiles of free-cycling cells. While such profiles lack explicit temporal information, they are sensitive to fork velocity and initiation capacity through the passive replication pattern, namely the replication of origins by forks emanating elsewhere. We apply our model-based approach to a compendium of profiles that include most viable budding yeast mutants implicated in replication. Predicted changes in fork velocity or initiation capacity are verified by profiling synchronously replicating cells. Notably, most mutants implicated in late (or early) origin effects are explained by global modulation of fork velocity or initiation capacity. Our approach provides a rigorous framework for analyzing DNA replication profiles of free-cycling cells.


Asunto(s)
Replicación del ADN/genética , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Estructuras Cromosómicas/genética , Genoma Fúngico , Modelos Genéticos
10.
Genome Res ; 23(2): 365-76, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23064748

RESUMEN

Accurate models of the cross-talk between signaling pathways and transcriptional regulatory networks within cells are essential to understand complex response programs. We present a new computational method that combines condition-specific time-series expression data with general protein interaction data to reconstruct dynamic and causal stress response networks. These networks characterize the pathways involved in the response, their time of activation, and the affected genes. The signaling and regulatory components of our networks are linked via a set of common transcription factors that serve as targets in the signaling network and as regulators of the transcriptional response network. Detailed case studies of stress responses in budding yeast demonstrate the predictive power of our method. Our method correctly identifies the core signaling proteins and transcription factors of the response programs. It further predicts the involvement of additional transcription factors and other proteins not previously implicated in the response pathways. We experimentally verify several of these predictions for the osmotic stress response network. Our approach requires little condition-specific data: only a partial set of upstream initiators and time-series gene expression data, which are readily available for many conditions and species. Consequently, our method is widely applicable and can be used to derive accurate, dynamic response models in several species.


Asunto(s)
Redes Reguladoras de Genes , Modelos Biológicos , Transducción de Señal , Estrés Fisiológico/fisiología , Algoritmos , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Concentración Osmolar , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo
11.
BMC Biol ; 12: 79, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25288172

RESUMEN

BACKGROUND: In budding yeast, perturbations that prolong S phase lead to a proportionate delay in the activation times of most origins. The DNA replication checkpoint was implicated in this scaling phenotype, as an intact checkpoint was shown to be required for the delayed activation of late origins in response to hydroxyurea treatment. In support of that, scaling is lost in cells deleted of mrc1, a mediator of the replication checkpoint signal. Mrc1p, however, also plays a role in normal replication. RESULTS: To examine whether the replication checkpoint is required for scaling the replication profile with S phase duration we measured the genome-wide replication profile of different MRC1 alleles that separate its checkpoint function from its role in normal replication, and further analyzed the replication profiles of S phase mutants that are checkpoint deficient. We found that the checkpoint is not required for scaling; rather the unique replication phenotype of mrc1 deleted cells is attributed to the role of Mrc1 in normal replication. This is further supported by the replication profiles of tof1Δ which functions together with Mrc1p in normal replication, and by the distinct replication profiles of specific POL2 alleles which differ in their interaction with Mrc1p. CONCLUSIONS: We suggest that the slow fork progression in mrc1 deleted cells reduces the likelihood of passive replication leading to the activation of origins that remain mostly dormant in wild-type cells.


Asunto(s)
Proteínas de Ciclo Celular/genética , Replicación del ADN/genética , ADN de Hongos/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Nat Genet ; 38(7): 830-4, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16783381

RESUMEN

Phenotypic diversity is generated through changes in gene structure or gene regulation. The availability of full genomic sequences allows for the analysis of gene sequence evolution. In contrast, little is known about the principles driving the evolution of gene expression. Here we describe the differential transcriptional response of four closely related yeast species to a variety of environmental stresses. Genes containing a TATA box in their promoters show an increased interspecies variability in expression, independent of their functional association. Examining additional data sets, we find that this enhanced expression divergence of TATA-containing genes is consistent across all eukaryotes studied to date, including nematodes, fruit flies, plants and mammals. TATA-dependent regulation may enhance the sensitivity of gene expression to genetic perturbations, thus facilitating expression divergence at particular genetic loci.


Asunto(s)
Expresión Génica , Genes Fúngicos , Saccharomyces/genética , ADN/genética , Evolución Molecular , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de la Especie , TATA Box
13.
Nat Genet ; 38(6): 636-43, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16715097

RESUMEN

Noise in gene expression is generated at multiple levels, such as transcription and translation, chromatin remodeling and pathway-specific regulation. Studies of individual promoters have suggested different dominating noise sources, raising the question of whether a general trend exists across a large number of genes and conditions. We examined the variation in the expression levels of 43 Saccharomyces cerevisiae proteins, in cells grown under 11 experimental conditions. For all classes of genes and under all conditions, the expression variance was approximately proportional to the mean; the same scaling was observed at steady state and during the transient responses to the perturbations. Theoretical analysis suggests that this scaling behavior reflects variability in mRNA copy number, resulting from random 'birth and death' of mRNA molecules or from promoter fluctuations. Deviation of coexpressed genes from this general trend, including high noise in stress-related genes and low noise in proteasomal genes, may indicate fluctuations in pathway-specific regulators or a differential activation pattern of the underlying gene promoters.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Citometría de Flujo , Genes Fúngicos , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
14.
Mol Syst Biol ; 9: 656, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23591772

RESUMEN

We report that when budding yeast are transferred to low-metal environment, they adopt a proliferation pattern in which division is restricted to the subpopulation of mother cells which were born in rich conditions, before the shift. Mother cells continue to divide multiple times following the shift, generating at each division a single daughter cell, which arrests in G1. The transition to a mother-restricted proliferation pattern is characterized by asymmetric segregation of the vacuole to the mother cell and requires the transcription repressor Whi5. Notably, while deletion of WHI5 alleviates daughter cell division arrest in low-zinc conditions, it results in a lower final population size, as cell division rate becomes progressively slower. Our data suggest a new stress-response strategy, in which the dilution of a limiting cellular resource is prevented by maintaining it within a subset of dividing cells, thereby increasing population growth.


Asunto(s)
División Celular/genética , Regulación Fúngica de la Expresión Génica , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Vacuolas/genética , Cationes Bivalentes , Recuento de Células , Cobre/deficiencia , Fase G1/genética , Deficiencias de Hierro , Fosfatos/deficiencia , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Vacuolas/metabolismo , Vacuolas/ultraestructura , Zinc/deficiencia
15.
Cell Rep ; 9(3): 1122-34, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25437565

RESUMEN

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that downregulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after 2 hr with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation.


Asunto(s)
Retroalimentación Fisiológica , Fosfatos/deficiencia , Saccharomycetales/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Mutación/genética , Fenotipo , Fosfatos/farmacología , Regulón/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/efectos de los fármacos , Saccharomycetales/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factores de Tiempo , Transcripción Genética/efectos de los fármacos
16.
Curr Biol ; 23(20): 2051-7, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24094854

RESUMEN

Cells must rapidly adapt to changes in nutrient availability. In budding yeast, limitation of phosphate rapidly induces the expression of the Pho regulon genes [1-4]. This starvation program depends on the transcription factor Pho4, which translocates to the nucleus within minutes when cells are transferred to a low-phosphate medium [5]. Contrasting its rapid induction, we report that the Pho regulon can remain induced for dozens of generations in cells transferred back to high phosphate levels. For example, about 40% of the cells that were starved for 2 hr maintained PHO4-dependent expression for over eleven generations of growing in high phosphate. This commitment to activation of the Pho regulon depends on two feedback loops that reduce internal phosphate, one through induction of the PHM1-4 genes that increase phosphate storage in the vacuoles and the second by induction of SPL2, which reduces incoming flux by inhibiting low-affinity transporters. Noise in SPL2 expression allows stochastic repression of the Pho regulon in committed cells growing at high phosphate, as we demonstrate using a novel method, DAmP multiple copy array (DaMCA), that reduces intrinsic noise in gene expression while maintaining mean abundance. Commitment is an integral part of the dual-transporter motif that helps cells prepare for nutrient depletion.


Asunto(s)
Regulación de la Expresión Génica , Fosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citometría de Flujo , Microscopía Confocal , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Procesos Estocásticos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Science ; 334(6061): 1408-12, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22158820

RESUMEN

Cells use transporters of different affinities to regulate nutrient influx. When nutrients are depleted, low-affinity transporters are replaced by high-affinity ones. High-affinity transporters are helpful when concentrations of nutrients are low, but the advantage of reducing their abundance when nutrients are abundant is less clear. When we eliminated such reduced production of the Saccharomyces cerevisiae high-affinity transporters for phosphate and zinc, the elapsed time from the initiation of the starvation program until the lack of nutrients limited growth was shortened, and recovery from starvation was delayed. The latter phenotype was rescued by constitutive activation of the starvation program. Dual-transporter systems appear to prolong preparation for starvation and to facilitate subsequent recovery, which may optimize sensing of nutrient depletion by integrating internal and external information about nutrient availability.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Catión/genética , Medios de Cultivo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Homeostasis , Fenotipo , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Simportadores de Protón-Fosfato/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Zinc/metabolismo
18.
PLoS One ; 2(2): e250, 2007 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-17327914

RESUMEN

Cells must adjust their gene expression in order to compete in a constantly changing environment. Two alternative strategies could in principle ensure optimal coordination of gene expression with physiological requirements. First, characters of the internal physiological state, such as growth rate, metabolite levels, or energy availability, could be feedback to tune gene expression. Second, internal needs could be inferred from the external environment, using evolutionary-tuned signaling pathways. Coordination of ribosomal biogenesis with the requirement for protein synthesis is of particular importance, since cells devote a large fraction of their biosynthetic capacity for ribosomal biogenesis. To define the relative contribution of internal vs. external sensing to the regulation of ribosomal biogenesis gene expression in yeast, we subjected S. cerevisiae cells to conditions which decoupled the actual vs. environmentally-expected growth rate. Gene expression followed the environmental signal according to the expected, but not the actual, growth rate. Simultaneous monitoring of gene expression and growth rate in continuous cultures further confirmed that ribosome biogenesis genes responded rapidly to changes in the environments but were oblivious to longer-term changes in growth rate. Our results suggest that the capacity to anticipate and prepare for environmentally-mediated changes in cell growth presented a major selection force during yeast evolution.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Transcripción Genética , Alcohol Deshidrogenasa/biosíntesis , Alcohol Deshidrogenasa/genética , Medios de Cultivo/farmacología , Retroalimentación Fisiológica , Fermentación/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/fisiología , Genes Fúngicos , Genes cdc , Micología/métodos , Nucleótidos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN de Hongos/biosíntesis , ARN de Hongos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , ARN de Transferencia/biosíntesis , ARN de Transferencia/genética , Reproducción Asexuada , Ribosomas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología
19.
Genome Biol ; 7(3): R20, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16542486

RESUMEN

BACKGROUND: Meiosis in budding yeast is coupled to the process of sporulation, where the four haploid nuclei are packaged into a gamete. This differentiation process is characterized by a point of transition, termed commitment, when it becomes independent of the environment. Not much is known about the mechanisms underlying commitment, but it is often assumed that positive feedback loops stabilize the underlying gene-expression cascade. RESULTS: We describe the gene-expression program of committed cells. Sporulating cells were transferred back to growth medium at different stages of the process, and their transcription response was characterized. Most sporulation-induced genes were immediately downregulated upon transfer, even in committed cells that continued to sporulate. Focusing on the metabolic-related transcription response, we observed that pre-committed cells, as well as mature spores, responded to the transfer to growth medium in essentially the same way that vegetative cells responded to glucose. In contrast, committed cells elicited a dramatically different response. CONCLUSION: Our results suggest that cells ensure commitment to sporulation not by stabilizing the process, but by modulating their gene-expression program in an active manner. This unique transcriptional program may optimize sporulation in an environment-specific manner.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Transcripción Genética , Cinética , Microscopía Fluorescente , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , ARN de Hongos/genética , ARN de Hongos/aislamiento & purificación , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA