Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 250, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890357

RESUMEN

ATP-citrate lyase is a central integrator of cellular metabolism in the interface of protein, carbohydrate, and lipid metabolism. The physiological consequences as well as the molecular mechanisms orchestrating the response to long-term pharmacologically induced Acly inhibition are unknown. We report here that the Acly inhibitor SB-204990 improves metabolic health and physical strength in wild-type mice when fed with a high-fat diet, while in mice fed with healthy diet results in metabolic imbalance and moderated insulin resistance. By applying a multiomic approach using untargeted metabolomics, transcriptomics, and proteomics, we determined that, in vivo, SB-204990 plays a role in the regulation of molecular mechanisms associated with aging, such as energy metabolism, mitochondrial function, mTOR signaling, and folate cycle, while global alterations on histone acetylation are absent. Our findings indicate a mechanism for regulating molecular pathways of aging that prevents the development of metabolic abnormalities associated with unhealthy dieting. This strategy might be explored for devising therapeutic approaches to prevent metabolic diseases.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Metabolismo de los Lípidos , Animales , Ratones , ATP Citrato (pro-S)-Liasa/metabolismo , Dieta Alta en Grasa , Envejecimiento
2.
Trends Cell Biol ; 30(2): 117-132, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31917080

RESUMEN

Mounting evidence suggests that DNA damage plays a central role in aging. Multiple tiers of defense have evolved to reduce the accumulation of DNA damage, including reducing damaging molecules, repairing DNA damage, and inducing senescence or apoptosis in response to persistent DNA damage. Mutations in or failure of these pathways can lead to accelerated or premature aging and age-related decline in vital organs, supporting the hypothesis that maintaining a pristine genome is paramount for human health. Understanding how we cope with DNA damage could inform on the aging process and further on how deficient DNA maintenance manifests in age-related phenotypes. This knowledge may lead to the development of novel interventions promoting healthspan.


Asunto(s)
Envejecimiento/genética , Genoma , Animales , Senescencia Celular/genética , Daño del ADN/genética , Reparación del ADN/genética , Humanos , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA