Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 18(1): 405-411, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29166033

RESUMEN

Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 103 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.


Asunto(s)
Carbocianinas/química , ADN/química , Colorantes Fluorescentes/química , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Nanopartículas del Metal/ultraestructura , Nanoestructuras/ultraestructura , Nanotecnología , Óptica y Fotónica , Resonancia por Plasmón de Superficie
2.
Faraday Discuss ; 205: 505-515, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28932831

RESUMEN

Rigid gap nano-aggregates of Au nanoparticles formed using cucurbit[n]uril (CB[n]) molecules are used to investigate the competitive binding of ethanol and methanol in an aqueous environment. We show it is possible to detect as little as 0.1% methanol in water and a ten times higher affinity to methanol over ethanol, making this a useful technology for quality control in alcohol production. We demonstrate strong interaction effects in the SERS peaks, which we demonstrate are likely from the hydrogen bonding of water complexes in the vicinity of the CB[n]s.

3.
Nat Commun ; 14(1): 3291, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280203

RESUMEN

Molecular vibrations couple to visible light only weakly, have small mutual interactions, and hence are often ignored for non-linear optics. Here we show the extreme confinement provided by plasmonic nano- and pico-cavities can sufficiently enhance optomechanical coupling so that intense laser illumination drastically softens the molecular bonds. This optomechanical pumping regime produces strong distortions of the Raman vibrational spectrum related to giant vibrational frequency shifts from an optical spring effect which is hundred-fold larger than in traditional cavities. The theoretical simulations accounting for the multimodal nanocavity response and near-field-induced collective phonon interactions are consistent with the experimentally-observed non-linear behavior exhibited in the Raman spectra of nanoparticle-on-mirror constructs illuminated by ultrafast laser pulses. Further, we show indications that plasmonic picocavities allow us to access the optical spring effect in single molecules with continuous illumination. Driving the collective phonon in the nanocavity paves the way to control reversible bond softening, as well as irreversible chemistry.

4.
ACS Nano ; 14(4): 4982-4987, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32208688

RESUMEN

The properties of nanoplasmonic structures depend strongly on their geometry, creating the need for high-precision control and characterization. Here, by exploiting the low activation energy of gold atoms on nanoparticle surfaces, we show how laser irradiation reshapes nanoparticle dimers. Time-course dark-field microspectroscopy allows this process to be studied in detail for individual nanostructures. Three regimes are identified: facet growth, formation of a conductive bridge between particles, and bridge growth. Electromagnetic simulations confirm the growth dynamics and allow measurement of bridge diameter, found to be highly reproducible and also self-limiting. Correlations in spectral resonances for the initial and final states give insight into the energy barriers for bridge growth. Dark-field microscopy shows that coalescence of multiple gaps in nanoparticle clusters can be digitally triggered, with each gap closing after discrete increases in irradiation power. Such control is important for light-induced nanowire formation or trimming of electronic and optoelectronic devices.

5.
Nat Commun ; 11(1): 682, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015332

RESUMEN

The dynamic restructuring of metal nanoparticle surfaces is known to greatly influence their catalytic, electronic transport, and chemical binding functionalities. Here we show for the first time that non-equilibrium atomic-scale lattice defects can be detected in nanoparticles by purely optical means. These fluctuating states determine interface electronic transport for molecular electronics but because such rearrangements are low energy, measuring their rapid dynamics on single nanostructures by X-rays, electron beams, or tunnelling microscopies, is invasive and damaging. We utilise nano-optics at the sub-5nm scale to reveal rapid (on the millisecond timescale) evolution of defect morphologies on facets of gold nanoparticles on a mirror. Besides dynamic structural information, this highlights fundamental questions about defining bulk plasma frequencies for metals probed at the nanoscale.

6.
ACS Sens ; 4(11): 2988-2996, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31565921

RESUMEN

Quantitative applications of surface-enhanced Raman spectroscopy (SERS) often rely on surface partition layers grafted to SERS substrates to collect and trap-solvated analytes that would not otherwise adsorb onto metals. Such binding layers drastically broaden the scope of analytes that can be probed. However, excess binding sites introduced by this partition layer also trap analytes outside the plasmonic "hotspots". We show that by eliminating these binding sites, limits of detection (LODs) can effectively be lowered by more than an order of magnitude. We highlight the effectiveness of this approach by demonstrating quantitative detection of controlled drugs down to subnanomolar concentrations in aqueous media. Such LODs are low enough to screen, for example, urine at clinically relevant levels. These findings provide unique insights into the binding behavior of analytes, which are essential when designing high-performance SERS substrates.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Dronabinol/análisis , Imidazoles/química , Indoles/análisis , Nanopartículas del Metal/química , Psicotrópicos/análisis , Oro/química , Límite de Detección , Simulación de Dinámica Molecular , Paraquat/análisis , Análisis de Componente Principal , Reproducibilidad de los Resultados , Espectrometría Raman/métodos
7.
J Phys Chem Lett ; 9(24): 7146-7151, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30525662

RESUMEN

Reproducible confinement of light on the nanoscale is essential for the ability to observe and control chemical reactions at the single-molecule level. Here we reliably form millions of identical nanocavities and show that the light can be further focused down to the subnanometer scale via the creation of picocavities, single-adatom protrusions with angstrom-level resolution. For the first time, we stabilize and analyze these cavities at room temperatures through high-speed surface-enhanced Raman spectroscopy on specifically selected molecular components, collecting and analyzing more than 2 million spectra. Data obtained on these picocavities allows us to deduce structural information on the nanoscale, showing that thiol binding to gold destabilizes the metal surface to optical irradiation. Nitrile moieties are found to stabilize picocavities by 10-fold against their disappearance, typically surviving for >1 s. Such constructs demonstrate the accessibility of single-molecule chemistry under ambient conditions.

8.
Nat Commun ; 8(1): 994, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057870

RESUMEN

Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level.

9.
Nat Commun ; 8(1): 1296, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101317

RESUMEN

Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature. We prove that strong-coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 104, while retaining quantum efficiencies above 50%, and demonstrate evidence for superlinear light emission.

10.
Science ; 354(6313): 726-729, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27846600

RESUMEN

Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer ("picocavities"), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 106 enhancement of optomechanical coupling between the picocavity field and vibrations of individual molecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.

11.
J Phys Chem Lett ; 7(12): 2264-9, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27223478

RESUMEN

Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA