Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
FASEB J ; 37(7): e23006, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249915

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of fluid-filled cysts within the kidney due to mutations in PKD1 or PKD2. Although the disease remains incompletely understood, one of the factors associated with ADPKD progression is the release of nucleotides (including ATP), which can initiate autocrine or paracrine purinergic signaling by binding to their receptors. Recently, we and others have shown that increased extracellular vesicle (EVs) release from PKD1 knockout cells can stimulate cyst growth through effects on recipient cells. Given that EVs are an important communicator between different nephron segments, we hypothesize that EVs released from PKD1 knockout distal convoluted tubule (DCT) cells can stimulate cyst growth in the downstream collecting duct (CD). Here, we show that administration of EVs derived from Pkd1-/- mouse distal convoluted tubule (mDCT15) cells result in a significant increase in extracellular ATP release from Pkd1-/- mouse inner medullary collecting duct (iMCD3) cells. In addition, exposure of Pkd1-/- iMCD3 cells to EVs derived from Pkd1-/- mDCT15 cells led to an increase in the phosphorylation of the serine/threonine-specific protein Akt, suggesting activation of proliferative pathways. Finally, the exposure of iMCD3 Pkd1-/- cells to mDCT15 Pkd1-/- EVs increased cyst size in Matrigel. These findings indicate that EVs could be involved in intersegmental communication between the distal convoluted tubule and the collecting duct and potentially stimulate cyst growth.


Asunto(s)
Quistes , Vesículas Extracelulares , Riñón Poliquístico Autosómico Dominante , Ratones , Animales , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón/metabolismo , Comunicación Celular , Vesículas Extracelulares/metabolismo , Adenosina Trifosfato/metabolismo , Quistes/metabolismo , Canales Catiónicos TRPP/metabolismo
2.
Nephrol Dial Transplant ; 38(3): 679-690, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35561741

RESUMEN

BACKGROUND: Hypomagnesaemia with secondary hypocal-caemia (HSH) is a rare autosomal recessive disorder caused by pathogenic variants in TRPM6, encoding the channel-kinase transient receptor potential melastatin type 6. Patients have very low serum magnesium (Mg2+) levels and suffer from muscle cramps and seizures. Despite genetic testing, a subgroup of HSH patients remains without a diagnosis. METHODS: In this study, two families with an HSH phenotype but negative for TRPM6 pathogenic variants were subjected to whole exome sequencing. Using a complementary combination of biochemical and functional analyses in overexpression systems and patient-derived fibroblasts, the effect of the TRPM7-identified variants on Mg2+ transport was examined. RESULTS: For the first time, variants in TRPM7 were identified in two families as a potential cause for hereditary HSH. Patients suffer from seizures and muscle cramps due to magnesium deficiency and episodes of hypocalcaemia. In the first family, a splice site variant caused the incorporation of intron 1 sequences into the TRPM7 messenger RNA and generated a premature stop codon. As a consequence, patient-derived fibroblasts exhibit decreased cell growth. In the second family, a heterozygous missense variant in the pore domain resulted in decreased TRPM7 channel activity. CONCLUSIONS: We establish TRPM7 as a prime candidate gene for autosomal dominant hypomagnesaemia and secondary hypocalcaemia. Screening of unresolved patients with hypocalcaemia and secondary hypocalcaemia may further establish TRPM7 pathogenic variants as a novel Mendelian disorder.


Asunto(s)
Hipocalcemia , Canales Catiónicos TRPM , Humanos , Magnesio , Canales Catiónicos TRPM/metabolismo , Calambre Muscular/complicaciones , Proteínas Serina-Treonina Quinasas/metabolismo
3.
FASEB J ; 35(5): e21506, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811695

RESUMEN

Purinergic signaling regulates several renal physiological and pathophysiological processes. Extracellular vesicles (EVs) are nanoparticles released by most cell types, which, in non-renal tissues, modulate purinergic signaling. The aim of this study was to investigate the effect of EVs from renal proximal tubule (HK2) and collecting duct cells (HCD) on intra- and intersegment modulation of extracellular ATP levels, the underlying molecular mechanisms, and the impact on the expression of the alpha subunit of the epithelial sodium channel (αENaC). HK2 cells were exposed to HK2 EVs, while HCD cells were exposed to HK2 and HCD EVs. Extracellular ATP levels and αENaC expression were measured by chemiluminescence and qRT-PCR, respectively. ATPases in EV populations were identified by mass spectrometry. The effect of aldosterone was assessed using EVs from aldosterone-treated cells and urinary EVs (uEVs) from primary aldosteronism (PA) patients. HK2 EVs downregulated ectonucleoside-triphosphate-diphosphohydrolase-1 (ENTPD1) expression, increased extracellular ATP and downregulated αENaC expression in HCD cells. ENTPD1 downregulation could be attributed to increased miR-205-3p and miR-505 levels. Conversely, HCD EVs decreased extracellular ATP levels and upregulated αENaC expression in HCD cells, probably due to enrichment of 14-3-3 isoforms with ATPase activity. Pretreatment of donor cells with aldosterone or exposure to uEVs from PA patients enhanced the effects on extracellular ATP and αENaC expression. We demonstrated inter- and intrasegment modulation of renal purinergic signaling by EVs. Our findings postulate EVs as carriers of information along the renal tubules, whereby processes affecting EV release and/or cargo may impact on purinergically regulated processes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Células Epiteliales/metabolismo , Canales Epiteliales de Sodio/metabolismo , Vesículas Extracelulares/fisiología , Regulación de la Expresión Génica , Hiperaldosteronismo/patología , Túbulos Renales/metabolismo , Células Epiteliales/citología , Canales Epiteliales de Sodio/genética , Humanos , Hiperaldosteronismo/metabolismo , Túbulos Renales/citología
4.
Biochem Pharmacol ; 203: 115192, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35905971

RESUMEN

Purinergic signalling is a receptor-mediated process characterized by the binding of extracellular nucleotides and nucleosides to purinergic receptors, which results in the activation intracellular signalling pathways, and, ultimately, leads to changes in cell physiology. Purinergic signalling has been related to the regulation of important physiological processes (e.g., renal electrolyte reabsorption; platelet aggregation; immune response). In addition, it has been associated with pathophysiological situations such as cancer and inflammation. Extracellular vesicles (EVs) are nanoparticles released by all cells of the organism, which play a key role in cell-cell communication. In this regard, EVs can mediate effects on target cells located at distant locations. Within their cargo, EVs contain molecules with the potential to affect purinergic signalling at the target cells and tissues. Here, we review the studies addressing the regulation of purinergic signalling by EVs based on the cell type or tissue where the regulation takes place. In this regard, EVs are found to play a major role in modulating the extracellular ATP levels and, specially, adenosine. This has a clear impact on, for instance, the inflammatory and immune response against cancer cells. Furthermore, we discuss the data available on the regulation of EV secretion and its cargo by purinergic signalling. Here, a major role of the purinergic receptor P2X7 and again, an impact on processes such as inflammation, immune response and cancer pathogenesis has been established. Finally, we highlight uninvestigated aspects of these two regulatory networks and address their potential as therapeutic targets.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Comunicación Celular , Vesículas Extracelulares/metabolismo , Humanos , Inflamación/metabolismo , Neoplasias/metabolismo , Receptores Purinérgicos/metabolismo , Transducción de Señal/fisiología
5.
Front Endocrinol (Lausanne) ; 13: 1005639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299464

RESUMEN

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is an inherited disorder characterized by the development of renal cysts, which frequently leads to renal failure. Hypertension and other cardiovascular symptoms contribute to the high morbidity and mortality of the disease. ADPKD is caused by mutations in the PKD1 gene or, less frequently, in the PKD2 gene. The disease onset and progression are highly variable between patients, whereby the underlying mechanisms are not fully elucidated. Recently, a role of extracellular vesicles (EVs) in the progression of ADPKD has been postulated. However, the mechanisms stimulating EV release in ADPKD have not been addressed and the participation of the distal nephron segments is still uninvestigated. Here, we studied the effect of Pkd1 deficiency on EV release in wild type and Pkd1-/- mDCT15 and mIMCD3 cells as models of the distal convoluted tubule (DCT) and inner medullary collecting duct (IMCD), respectively. By using nanoparticle tracking analysis, we observed a significant increase in EV release in Pkd1-/- mDCT15 and mIMCD3 cells, with respect to the wild type cells. The molecular mechanisms leading to the changes in EV release were further investigated in mDCT15 cells through RNA sequencing and qPCR studies. Specifically, we assessed the relevance of purinergic signaling and ceramide biosynthesis enzymes. Pkd1-/- mDCT15 cells showed a clear upregulation of P2rx7 expression compared to wild type cells. Depletion of extracellular ATP by apyrase (ecto-nucleotidase) inhibited EV release only in wild type cells, suggesting an exacerbated signaling of the extracellular ATP/P2X7 pathway in Pkd1-/- cells. In addition, we identified a significant up-regulation of the ceramide biosynthesis enzymes CerS6 and Smpd3 in Pkd1-/- cells. Altogether, our findings suggest the involvement of the DCT in the EV-mediated ADPKD progression and points to the induction of ceramide biosynthesis as an underlying molecular mechanism. Further studies should be performed to investigate whether CerS6 and Smpd3 can be used as biomarkers of ADPKD onset, progression or severity.


Asunto(s)
Ceramidas , Vesículas Extracelulares , Riñón Poliquístico Autosómico Dominante , Humanos , Adenosina Trifosfato , Apirasa/metabolismo , Ceramidas/biosíntesis , Ceramidas/genética , Vesículas Extracelulares/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA