Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Immunology ; 164(2): 266-278, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34003490

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious, economically devastating disease of cloven-hooved animals. The development of long-lasting effective FMD vaccines would greatly benefit the global FMD control programme. Deep analysis of adaptive immunity in cattle vaccinated against FMD is technically challenging due to the lack of species-specific tools. In this study, we aimed to identify CD4+ T-cell epitopes in the FMD virus (FMDV) capsid and to phenotype the CD4+ T cells that recognize them using bovine major histocompatibility complex (BoLA) class II tetramer. A BoLA class II tetramer based on the DRA/DRB3*020:02 allele and FMDV antigen-stimulated PBMCs from bovine vaccinates were used to successfully identify four epitopes in the FMDV capsid, three of which have not been previously reported; two epitopes were identified in the structural protein VP1, one in VP3 and one in VP4. Specificity of the three novel epitopes was confirmed by proliferation assay. All epitope-expanded T-cell populations produced IFN-γ in vitro, indicating a long-lasting Th1 cell phenotype after FMD vaccination. VP3-specific CD4+ T cells exhibited the highest frequency amongst the identified epitopes, comprising >0·004% of the CD4+ T-cell population. CD45RO+ CCR7+ defined central memory CD4+ T-cell subpopulations were present in higher frequency in FMDV-specific CD4+ T-cell populations from FMD-vaccinated cattle ex vivo. This indicates an important role in maintaining cell adaptive immunity after FMD vaccination. Notably, FMDV epitope-loaded tetramers detected the presence of FMDV-specific CD4+ T cells in bovine PBMC more than four years after vaccination. This work contributes to our understanding of vaccine efficacy.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/virología , Proteínas de la Cápside/inmunología , Bovinos , Células Cultivadas , Epítopos de Linfocito T/inmunología , Fiebre Aftosa/virología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Serogrupo , Vacunación/métodos
2.
Front Immunol ; 14: 1181716, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153548

RESUMEN

T cell responses directed against highly conserved viral proteins contribute to the clearance of the influenza virus and confer broadly cross-reactive and protective immune responses against a range of influenza viruses in mice and ferrets. We examined the protective efficacy of mucosal delivery of adenoviral vectors expressing hemagglutinin (HA) and nucleoprotein (NP) from the H1N1 virus against heterologous H3N2 challenge in pigs. We also evaluated the effect of mucosal co-delivery of IL-1ß, which significantly increased antibody and T cell responses in inbred Babraham pigs. Another group of outbred pigs was first exposed to pH1N1 as an alternative means of inducing heterosubtypic immunity and were subsequently challenged with H3N2. Although both prior infection and adenoviral vector immunization induced strong T-cell responses against the conserved NP protein, none of the treatment groups demonstrated increased protection against the heterologous H3N2 challenge. Ad-HA/NP+Ad-IL-1ß immunization increased lung pathology, although viral load was unchanged. These data indicate that heterotypic immunity may be difficult to achieve in pigs and the immunological mechanisms may differ from those in small animal models. Caution should be applied in extrapolating from a single model to humans.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Humanos , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Subtipo H3N2 del Virus de la Influenza A , Porcinos
3.
Front Immunol ; 14: 1192604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287962

RESUMEN

Porcine respiratory disease is multifactorial and most commonly involves pathogen co-infections. Major contributors include swine influenza A (swIAV) and porcine reproductive and respiratory syndrome (PRRSV) viruses. Experimental co-infection studies with these two viruses have shown that clinical outcomes can be exacerbated, but how innate and adaptive immune responses contribute to pathogenesis and pathogen control has not been thoroughly evaluated. We investigated immune responses following experimental simultaneous co-infection of pigs with swIAV H3N2 and PRRSV-2. Our results indicated that clinical disease was not significantly exacerbated, and swIAV H3N2 viral load was reduced in the lung of the co-infected animals. PRRSV-2/swIAV H3N2 co-infection did not impair the development of virus-specific adaptive immune responses. swIAV H3N2-specific IgG serum titers and PRRSV-2-specific CD8ß+ T-cell responses in blood were enhanced. Higher proportions of polyfunctional CD8ß+ T-cell subset in both blood and lung washes were found in PRRSV-2/swIAV H3N2 co-infected animals compared to the single-infected groups. Our findings provide evidence that systemic and local host immune responses are not negatively affected by simultaneous swIAV H3N2/PRRSV-2 co-infection, raising questions as to the mechanisms involved in disease modulation.


Asunto(s)
Coinfección , Gripe Humana , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Humanos , Subtipo H3N2 del Virus de la Influenza A , Inmunidad
4.
Viruses ; 14(3)2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35337028

RESUMEN

Foot-and-mouth disease (FMD) is endemic in large parts of sub-Saharan Africa, Asia and South America, where outbreaks in cloven-hooved livestock threaten food security and have severe economic impacts. Vaccination in endemic regions remains the most effective control strategy. Current FMD vaccines are produced from chemically inactivated foot-and-mouth disease virus (FMDV) grown in suspension cultures of baby hamster kidney 21 cells (BHK-21). Strain diversity means vaccines produced from one subtype may not fully protect against circulating disparate subtypes, necessitating the development of new vaccine strains that "antigenically match". However, some viruses have proven difficult to adapt to cell culture, slowing the manufacturing process, reducing vaccine yield and limiting the availability of effective vaccines, as well as potentiating the selection of undesired antigenic changes. To circumvent the need to cell culture adapt FMDV, we have used a systematic approach to develop recombinant suspension BHK-21 that stably express the key FMDV receptor integrin αvß6. We show that αvß6 expression is retained at consistently high levels as a mixed cell population and as a clonal cell line. Following exposure to field strains of FMDV, these recombinant BHK-21 facilitated higher virus yields compared to both parental and control BHK-21, whilst demonstrating comparable growth kinetics. The presented data supports the application of these recombinant αvß6-expressing BHK-21 in future FMD vaccine production.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Línea Celular , Virus de la Fiebre Aftosa/genética , Vacunación , Vacunas Virales/genética
5.
Front Immunol ; 13: 867707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418984

RESUMEN

In the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology. Importantly, although all four strains replicated equally well in porcine cell lines in vitro and in the upper respiratory tract in vivo, PRCV strains causing more severe lung pathology were also able to replicate in ex vivo tracheal organ cultures as well as in vivo in the trachea and lung. The time course of infection of PRCV 135, which caused the most severe pulmonary pathology, was investigated. Virus was shed from the upper respiratory tract until day 10 post infection, with infection of the respiratory mucosa, as well as olfactory and sustentacular cells, providing an excellent model to study upper respiratory tract disease in addition to the commonly known lower respiratory tract disease from PRCV. Infected animals made antibody and T cell responses that cross reacted with the four PRCV strains and Transmissible Gastroenteritis Virus. The antibody response was reproduced in vitro in organ cultures. Comparison of mechanisms of infection and immune control in pigs infected with PRCVs of differing pathogenicity with human data from SARS-CoV-2 infection and from our in vitro organ cultures, will enable key events in coronavirus infection and disease pathogenesis to be identified.


Asunto(s)
COVID-19 , Coronavirus Respiratorio Porcino , Enfermedades de los Porcinos , Virus de la Gastroenteritis Transmisible , Animales , SARS-CoV-2 , Porcinos
6.
Front Immunol ; 11: 2083, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042120

RESUMEN

Despite the role of pigs as a source of new Influenza A Virus viruses (IAV) potentially capable of initiating human pandemics, immune responses to swine influenza virus (SwIV) in pigs are not fully understood. Several SwIV epitopes presented by swine MHC (SLA) class I have been identified using different approaches either in outbred pigs or in Babraham large white inbred pigs, which are 85% identical by genome wide SNP analysis. On the other hand, some class II SLA epitopes were recently described in outbred pigs. In this work, Babraham large white inbred pigs were selected to identify SLA II epitopes from SwIV H1N1. PBMCs were screened for recognition of overlapping peptides covering the NP and M1 proteins from heterologous IAV H1N1 in IFNγ ELISPOT. A novel SLA class II restricted epitope was identified in NP from swine H1N1. This conserved novel epitope could be the base for further vaccine approaches against H1N1 in pigs.


Asunto(s)
Epítopos/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Leucocitos Mononucleares/inmunología , Proteínas de la Nucleocápside/genética , Infecciones por Orthomyxoviridae/inmunología , Péptidos/genética , Animales , Células Cultivadas , Secuencia Conservada/genética , Ensayo de Immunospot Ligado a Enzimas , Interferón gamma/metabolismo , Porcinos , Proteínas de la Matriz Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA