Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Bioenerg Biomembr ; 48(1): 43-54, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26739598

RESUMEN

Copper-based drugs, Casiopeinas (Cas), exhibit antiproliferative and antineoplastic activities in vitro and in vivo, respectively. Unfortunately, the clinical use of these novel chemotherapeutics could be limited by the development of dose-dependent cardiotoxicity. In addition, the molecular mechanisms underlying Cas cardiotoxicity and anticancer activity are not completely understood. Here, we explore the potential impact of Cas on the cardiac mitochondria energetics as the molecular mechanisms underlying Cas-induced cardiotoxicity. To explore the properties on mitochondrial metabolism, we determined Cas effects on respiration, membrane potential, membrane permeability, and redox state in isolated cardiac mitochondria. The effect of Cas on the mitochondrial membrane potential (Δψm) was also evaluated in isolated cardiomyocytes by confocal microscopy and flow cytometry. Cas IIIEa, IIgly, and IIIia predominately inhibited maximal NADH- and succinate-linked mitochondrial respiration, increased the state-4 respiration rate and reduced membrane potential, suggesting that Cas also act as mitochondrial uncouplers. Interestingly, cyclosporine A inhibited Cas-induced mitochondrial depolarization, suggesting the involvement of mitochondrial permeability transition pore (mPTP). Similarly to isolated mitochondria, in isolated cardiomyocytes, Cas treatment decreased the Δψm and cyclosporine A treatment prevented mitochondrial depolarization. The production of H2O2 increased in Cas-treated mitochondria, which might also increase the oxidation of mitochondrial proteins such as adenine nucleotide translocase. In accordance, an antioxidant scavenger (Tiron) significantly diminished Cas IIIia mitochondrial depolarization. Cas induces a prominent loss of membrane potential, associated with alterations in redox state, which increases mPTP opening, potentially due to thiol-dependent modifications of the pore, suggesting that direct or indirect inhibition of mPTP opening might reduce Cas-induced cardiotoxicity.


Asunto(s)
Antineoplásicos , Cobre , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Cobre/efectos adversos , Cobre/farmacología , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología , Permeabilidad/efectos de los fármacos , Ratas
2.
J Biomed Mater Res A ; 109(6): 926-937, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32779367

RESUMEN

Poly(ethylene glycol) (PEG) hydrogels have been extensively used as scaffolds for tissue engineering applications, owing to their biocompatibility, chemical versatility, and tunable mechanical properties. However, their bio-inert properties require them to be associated with additional functional moieties to interact with cells. To circumvent this need, we propose here to reticulate PEG molecules with poly(L-lysine) dendrigrafts (DGL) to provide intrinsic cell functionalities to PEG-based hydrogels. The physico-chemical characteristics of the resulting hydrogels were studied in regard of the concentration of each component. With increasing amounts of DGL, the cross-linking time and swelling ratio could be decreased, conversely to mechanical properties, which could be tailored from 7.7 ± 0.7 to 90 ± 28.8 kPa. Furthermore, fibroblasts adhesion, viability, and morphology on hydrogels were then assessed. While cell adhesion significantly increased with the concentration of DGL, cell viability was dependant of the ratio of DGL and PEG. Cell morphology and proliferation; however, appeared mainly related to the overall hydrogel rigidity. To allow cell infiltration and cell growth in 3D, the hydrogels were rendered porous. The biocompatibility of resulting hydrogels of different compositions and porosities was evaluated by 3 week subcutaneous implantations in mice. Hydrogels allowed an extensive cellular infiltration with a mild foreign body reaction, histological evidence of hydrogel degradation, and neovascularization.


Asunto(s)
Materiales Biocompatibles/química , Polietilenglicoles/química , Polilisina/química , Andamios del Tejido , Animales , Materiales Biocompatibles/efectos adversos , Adhesión Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Reactivos de Enlaces Cruzados , Reacción a Cuerpo Extraño , Humanos , Hidrogeles , Fenómenos Mecánicos , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Polietilenglicoles/efectos adversos , Polilisina/efectos adversos , Porosidad , Andamios del Tejido/efectos adversos
3.
Arch Dermatol Res ; 311(10): 741-751, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31392392

RESUMEN

Substrate stiffness is a key regulator of cell behavior. To investigate how mechanical properties of cell microenvironment affect the human keratinocyte, primary cells were seeded on polyacrylamide hydrogels of different compliances (soft: 4 kPa, medium: 14 kPa, rigid: 45 kPa) in comparison with glass coverslip (> GPa). Keratinocyte spreading and proliferation were strongly decreased on the softest hydrogel, while no significant difference was observed between medium, rigid hydrogels and glass coverslip, and cells' viability was comparable in all conditions after 72 h. We then performed a RNA-seq to compare the transcriptomes from keratinocytes cultured for 72 h on the softest hydrogel or on coverslips. The cells on the soft hydrogel showed a strong increase in the expression of late differentiation marker genes from the epidermal differentiation complex (1q21) and the antioxidant machinery. In parallel, these cells displayed a significant loss of expression of the matrix receptors (integrin α6 and ß1) and the EGF receptor. However, when these cells were replated on a plastic culture plate (> GPa), they were able to re-engage the proliferation machinery with a strong colony-formation efficiency. Overall, using low-calcium differentiation monolayers at confluence, the lesser the rigidity, the stronger the markers of late differentiation are expressed, while the inverse is observed regarding the markers of early differentiation. In conclusion, below a certain rigidity, human keratinocytes undergo genome reprogramming indicating terminal differentiation that can switch back to proliferation in contact with a stiffer environment.


Asunto(s)
Diferenciación Celular/fisiología , Microambiente Celular/fisiología , Queratinocitos/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Prepucio/citología , Humanos , Recién Nacido , Masculino , Cultivo Primario de Células/métodos , RNA-Seq
4.
Oxid Med Cell Longev ; 2018: 8949450, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765507

RESUMEN

Casiopeinas are a group of copper-based antineoplastic molecules designed as a less toxic and more therapeutic alternative to cisplatin or Doxorubicin; however, there is scarce evidence about their toxic effects on the whole heart and cardiomyocytes. Given this, rat hearts were perfused with Casiopeinas or Doxorubicin and the effects on mechanical performance, energetics, and mitochondrial function were measured. As well, the effects of Casiopeinas-triggered cell death were explored in isolated cardiomyocytes. Casiopeinas III-Ea, II-gly, and III-ia induced a progressive and sustained inhibition of heart contractile function that was dose- and time-dependent with an IC50 of 1.3 ± 0.2, 5.5 ± 0.5, and 10 ± 0.7 µM, correspondingly. Myocardial oxygen consumption was not modified at their respective IC50, although ATP levels were significantly reduced, indicating energy impairment. Isolated mitochondria from Casiopeinas-treated hearts showed a significant loss of membrane potential and reduction of mitochondrial Ca2+ retention capacity. Interestingly, Cyclosporine A inhibited Casiopeinas-induced mitochondrial Ca2+ release, which suggests the involvement of the mitochondrial permeability transition pore opening. In addition, Casiopeinas reduced the viability of cardiomyocytes and stimulated the activation of caspases 3, 7, and 9, demonstrating a cell death mitochondrial-dependent mechanism. Finally, the early perfusion of Cyclosporine A in isolated hearts decreased Casiopeinas-induced dysfunction with reduction of their toxic effect. Our results suggest that heart cardiotoxicity of Casiopeinas is similar to that of Doxorubicin, involving heart mitochondrial dysfunction, loss of membrane potential, changes in energetic metabolites, and apoptosis triggered by mitochondrial permeability.


Asunto(s)
Antineoplásicos/efectos adversos , Cardiotoxicidad/etiología , Mitocondrias Cardíacas/efectos de los fármacos , Compuestos Organometálicos/efectos adversos , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Complejos de Coordinación/efectos adversos , Complejos de Coordinación/química , Cobre/efectos adversos , Cobre/química , Masculino , Mitocondrias Cardíacas/metabolismo , Compuestos Organometálicos/administración & dosificación , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA