Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
J Neurochem ; 122(1): 185-95, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22486171

RESUMEN

In the Wobbler mouse, a mutation of the Vps54 protein increases oxidative stress in spinal motoneurons, associated to toxic levels of nitric oxide and hyperactivity of nitric oxide synthase (NOS). Progesterone neuroprotection has been reported for several CNS diseases, including the Wobbler mouse neurodegeneration. In the present study, we analyzed progesterone effects on mitochondrial-associated parameters of symptomatic Wobbler mice. The activities of mitochondrial respiratory chain complexes I, II-III and IV and protein levels of mitochondrial and cytosolic NOS were determined in cervical and lumbar cords from control, Wobbler and Wobbler mice receiving a progesterone implant for 18 days. We found a significant reduction of complex I and II-III activities in mitochondria and increased protein levels of mitochondrial, but not cytosolic nNOS, in the cervical cord of Wobbler mice. Progesterone treatment prevented the reduction of complex I in the cervical region and the increased level of mitochondrial nNOS. Wobbler motoneurons also showed accumulation of amyloid precursor protein immunoreactivity and decreased activity and immunostaining of MnSOD. Progesterone treatment avoided these abnormalities. Therefore, administration of progesterone to clinically afflicted Wobblers (i) prevented the abnormal increase of mitochondrial nNOS and normalized respiratory complex I; (ii) decreased amyloid precursor protein accumulation, a sign of axonal degeneration, and (iii) increased superoxide dismutation. Thus, progesterone neuroprotection decreases mitochondriopathy of Wobbler mouse cervical spinal cord.


Asunto(s)
Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/prevención & control , Complejos Multienzimáticos/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Progesterona/uso terapéutico , Médula Espinal/efectos de los fármacos , Albinismo Oculocutáneo/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas de Drosophila , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Ratones , Ratones Mutantes , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Enfermedades Mitocondriales/genética , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , NADPH Deshidrogenasa/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Médula Espinal/patología , Médula Espinal/ultraestructura , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Superóxido Dismutasa/metabolismo , Proteínas de Transporte Vesicular/genética
2.
Oxid Med Cell Longev ; 2018: 8561892, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721150

RESUMEN

Programmed and damage aging theories have traditionally been conceived as stand-alone schools of thought. However, the p66Shc adaptor protein has demonstrated that aging-regulating genes and reactive oxygen species (ROS) are closely interconnected, since its absence modifies metabolic homeostasis by providing oxidative stress resistance and promoting longevity. p66Shc(-/-) mice are a unique opportunity to further comprehend the bidirectional relationship between redox homeostasis and the imbalance of mitochondrial biogenesis and dynamics during aging. This study shows that brain mitochondria of p66Shc(-/-) aged mice exhibit a reduced alteration of redox balance with a decrease in both ROS generation and its detoxification activity. We also demonstrate a strong link between reactive nitrogen species (RNS) and mitochondrial function, morphology, and biogenesis, where low levels of ONOO- formation present in aged p66Shc(-/-) mouse brain prevent protein nitration, delaying the loss of biological functions characteristic of the aging process. Sirt3 modulates age-associated mitochondrial biology and function via lysine deacetylation of target proteins, and we show that its regulation depends on its nitration status and is benefited by the improved NAD+/NADH ratio in aged p66Shc(-/-) brain mitochondria. Low levels of protein nitration and acetylation could cause the metabolic homeostasis maintenance observed during aging in this group, thus increasing its lifespan.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Mitocondrias/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Sirtuina 3/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Animales , Homeostasis , Ratones , Ratones Noqueados
3.
FASEB J ; 20(8): 1236-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16672635

RESUMEN

This study investigated whether inducible heme oxygenase-1[corrected] (HO-1) [corrected] is targeted to mitochondria and its putative effects on oxidative metabolism in rat liver. Western blot and immune-electron microscopy in whole purified and fractionated organelles showed basal expression of HO-1 protein in both microsomes and mitochondria (inner membrane), accompanied by a parallel HO activity. Inducers of HO-1 increased HO-1 targeting to the inner mitochondrial membrane, which also contained biliverdin reductase, supporting that both enzymes are in the same compartmentalization. Induction of mitochondrial HO-1 was associated with a decrease of mitochondrial heme content and selective reduction of protein expression of cytochrome oxidase (COX) subunit I, which is coded by the mitochondrial genome and synthesized in the mitochondria depending on heme availability; these changes resulted in decreased COX spectrum and activity. Mitochondrial HO-1 induction was also associated with down-regulation of mitochondrial-targeted NO synthase expression and activity, resulting in a reduction of NO-dependent mitochondrial oxidant yield; inhibition of HO-1 activity reverted these effects. In conclusion, we demonstrated for the first time localization of HO-1 protein in mitochondria. It is surmised that mitochondrial HO-1 has important biological roles in regulating mitochondrial heme protein turnover and in protecting against conditions such as hypoxia, neurodegenerative diseases, or sepsis, in which substantially increased mitochondrial NO and oxidant production have been implicated.


Asunto(s)
Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo/metabolismo , Mitocondrias Hepáticas/enzimología , Animales , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Hemo Oxigenasa (Desciclizante)/análisis , Mitocondrias Hepáticas/metabolismo , Óxido Nítrico Sintasa/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/análisis , Consumo de Oxígeno , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
4.
Cancer Res ; 63(19): 6370-7, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-14559826

RESUMEN

Differential expression and activity of constitutive mitochondrial nitric oxide synthase (mtNOS) in the mitochondrial compartment is followed by significant variations in matrix nitric oxide (NO) steady-state concentration. The mitochondrial utilization of NO involves the production of superoxide anion and H(2)O(2), a species freely diffusible outside the mitochondria that participates in the modulation of cell proliferation and apoptosis and in cell transformation and cancer. On these bases, we analyzed the modulation of mtNOS in the frame of cellular redox state in M3, MM3, and P07 murine tumors and their respective cell lines, as compared with normal proliferating and quiescent tissues. The results showed that: (a) tumoral and proliferating mitochondria only retain 10-50% of the activity of complexes I, II-III, and IV and Mn-SOD of quiescent tissues; (b) normal proliferating tissues, like embryonic liver or pregnant mammary gland, have 10-20% of mtNOS expression and activity and mitochondrial H(2)O(2) yield than quiescent nonproliferating tissues; (c) similarly but irrespective of mtNOS expression, tumoral mitochondria have no >5% of mtNOS activity and H(2)O(2) yield of mature tissues; and (d) in opposition to stable tissues, both tumoral and normal proliferating cells exhibit high cyclin D1 expression and low pro-apoptotic p38mitogen-activated protein kinase activity. Dually, H(2)O(2) stimulated tumor cell proliferation (<10 microM) or markedly inhibited it (>10 microM) with parallel variations of cyclin D1, phospho-extracellular-regulated kinase1/2, and phospho-p38mitogen-activated protein kinase. It is surmised that decreased oxidative phosphorylation, defective tumoral mtNOS, and low mitochondrial NO-dependent H(2)O(2) may be a platform to link persistent tumoral growth to embryonic behavior.


Asunto(s)
Adenocarcinoma/enzimología , Peróxido de Hidrógeno/metabolismo , Neoplasias Mamarias Experimentales/enzimología , Mitocondrias/enzimología , Óxido Nítrico Sintasa/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , División Celular/fisiología , Línea Celular Tumoral , Ciclina D1/biosíntesis , Femenino , Hígado/citología , Hígado/embriología , Hígado/enzimología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Mitocondrias/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Embarazo , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos
5.
Methods Enzymol ; 396: 399-414, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16291249

RESUMEN

For many years, mitochondrial respiration was thought to follow an "all or nothing" paradigm supporting the notion that in the normal O2 concentration range, respiration is mainly controlled by tissue demands. However, nitric oxide produced by cytosol or mitochondrial nitric oxide synthases adapts respiration to different physiologic conditions and increases the mitochondrial production of O2 active species that contributes to NO clearance. Because mitochondrial NO utilization is sensitive to environmental or hormonal modulation, and because diffusible active species, like H2O2, are able to regulate genes related to proliferation, quiescence, and death, we surmised that the two mechanisms converge to elicit the different responses in cell physiology.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Animales , Catalasa/metabolismo , Proliferación Celular , Electroforesis en Gel de Poliacrilamida , Glutatión Peroxidasa/metabolismo , Mitocondrias/enzimología , Óxido Nítrico Sintasa/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxidos/metabolismo
6.
Neurosci Lett ; 537: 1-5, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23340200

RESUMEN

OBJECTIVES: To determine clinical characteristics and frequency of leucine-rich repeat kinase 2 gene (LRRK2) mutations in a cohort of patients with Parkinson's disease (PD) from Argentina. BACKGROUND: Variation in the LRRK2 gene represents the most common genetic determinant of PD, only few data are available from Latin-America. DESIGN/METHODS: Informed consent was obtained and all studies were approved by the Institutional Review Boards. Fifty five consecutive PD patients were recruited. A structured interview and neurological examination were used to collect demographic and clinical information. Blood samples were obtained and DNA extracted from patient venous blood. All LRRK2 exons from 25 exon to 51 exon were screened in all patients. RESULTS: Clinical and molecular data of 55 patients with PD were analyzed. Mean age was 68.8±10.6 years. Jewish and Basque ancestries were found positive in 9 and 7 patients, respectively; family history of PD was identified in 16 patients. The G2019S mutation was present in 3 Ashkenazi Jewish subjects (5.45%); all of them reported family history of PD in first-degree relatives. Although Argentina possesses one of the most important Basque communities outside Spain, non R1414G mutation was identified in this cohort. Eleven single polymorphisms (SNP) were identified in this cohort. The mean age at onset was higher in G2019S mutation carriers than non-carriers (66.67 vs 58.78 years). Asymmetrical tremor as initial symptom and non-motor symptoms occurred at similar frequencies in both groups. The G2019S mutation carriers showed a non significant increase in dyskinesias, and 2/3 developed Dopamine Dysregulation Syndrome and visual hallucinations. Systemic disorder identified in G2019S mutation carriers included: celiac disease, hypothyroidism, Hashimoto's Thyroiditis and arterial hypertension. CONCLUSIONS: The prevalence of LRRK2 G2019S mutation in this Argentinean cohort was similar to other international series, with a higher prevalence in Ashkenazi Jewish. The phenotype was indistinguishable from patients with idiopathic PD. Interestingly, we identified immune mediated disorders in two PD patients carrying the G2019S mutation. Within this context, recent studies have identified full-length LRRK2 as a relatively common constituent of many cell types in the immune system including human peripheral blood mononuclear cells. Nevertheless, a casual association could not be excluded and the analysis of more extensive series is required.


Asunto(s)
Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Argentina , Femenino , Heterocigoto , Humanos , Judíos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Masculino , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/etnología , Enfermedad de Parkinson/fisiopatología , Linaje , Población Blanca
7.
Antioxid Redox Signal ; 16(10): 1150-80, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21967640

RESUMEN

Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis.


Asunto(s)
Ciclo Celular , Mitocondrias/fisiología , Animales , Muerte Celular , Proliferación Celular , Humanos , Oxidación-Reducción , Fosfotransferasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
10.
Adv Drug Deliv Rev ; 61(14): 1234-49, 2009 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-19733603

RESUMEN

Phylogenetic studies had shown that evolution of mitochondria occurred in parallel with the maturation of kinases implicated in growth and final size of modern organisms. In the last years, different reports confirmed that MAPKs, Akt, PKA and PKC are present in mitochondria, particularly in the intermembrane space and inner membrane where they meet mitochondrial constitutive upstream activators. Although a priori phosphorylation is the apparent aim of translocation, new perspectives indicate that kinase activation depends on redox status as determined by the mitochondrial production of oxygen species. We observed that the degree of mitochondrial oxidation of ERK Cys(38) and Cys(214) discriminates the kinase to be phosphorylated and determines translocation to the nuclear compartment and proliferation, or accumulation in mitochondria and arrest. Otherwise, transcriptional gene regulation by Akt depends on Cys(60) and Cys(310) oxidation to sulfenic and sulfonic acids. It is concluded that the interactions between kinases and mitochondria control cell signaling pathways and participate in the modulation of cell proliferation and arrest, tissue protection, tumorigenesis and cancer progression.


Asunto(s)
Mitocondrias/enzimología , Mitocondrias/fisiología , Proteínas Quinasas/fisiología , Transducción de Señal/fisiología , Sistemas de Liberación de Medicamentos/métodos , Humanos , Modelos Biológicos , Infarto del Miocardio/metabolismo , Neoplasias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
11.
PLoS One ; 4(10): e7523, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19844585

RESUMEN

Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473) by mTORC2 and Thr(308) by PDK1. On these bases, we investigated the mechanistic connection of H(2)O(2) yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2)O(2) entails the entrance of cytosolic P-Akt1 Ser(473) to mitochondria, where it is further phosphorylated at Thr(308) by constitutive PDK1. Phosphorylation of Thr(308) in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2)O(2), Akt1-PDK1 association is disrupted and P-Akt1 Ser(473) accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2)O(2) effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310) to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.


Asunto(s)
Mitocondrias/metabolismo , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis , Ciclo Celular , Linaje de la Célula , Ácido Cisteico/química , Citosol/metabolismo , Peróxido de Hidrógeno/química , Ratones , Modelos Biológicos , Células 3T3 NIH , Fosforilación , Ácidos Sulfénicos/química
12.
PLoS One ; 3(6): e2379, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18545666

RESUMEN

Mitochondria are major cellular sources of hydrogen peroxide (H(2)O(2)), the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H(2)O(2) concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H(2)O(2) due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs) orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H(2)O(2) yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 microM H(2)O(2) increased cell proliferation in ERK1/2-dependent manner whereas high 50 microM H(2)O(2) arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei), the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs) facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H(2)O(2) level. Like this, high H(2)O(2) or directed mutation of redox-sensitive ERK2 Cys(214) impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to increase H(2)O(2) yield should disrupt synchronized MAPK oxidations and the regulation of cell cycle leading cells to remain in a proliferating phenotype.


Asunto(s)
Mitocondrias/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias/patología , Animales , Catálisis , Ciclo Celular , Línea Celular Tumoral , Núcleo Celular/enzimología , Ratones , Neoplasias/enzimología , Oxidación-Reducción , Fenotipo , Fosforilación , Transporte de Proteínas , Transducción de Señal
13.
Am J Physiol Cell Physiol ; 292(5): C1569-80, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17496232

RESUMEN

Mitochondria are the specialized organelles for energy metabolism, but, as a typical example of system biology, they also activate a multiplicity of pathways that modulate cell proliferation and mitochondrial biogenesis or oppositely promote cell arrest and programmed cell death by a limited number of oxidative or nitrosative reactions. These reactions are influenced by matrix nitric oxide (NO) steady-state concentration, either from local production or by gas diffusion to mitochondria from the canonical sources. Likewise, in a range of approximately 30-200 nM, NO turns mitochondrial O(2) utilization down by binding to cytochrome oxidase and elicits a burst of superoxide anion and hydrogen peroxide that diffuses outside mitochondria. Depending on NO levels and antioxidant defenses, more or less H(2)O(2) accumulates in cytosol and nucleus, and the resulting redox grading contributes to dual activation of proliferating and proapoptotic cascades, like ERK1/2 or p38 MAPK. Moreover, these sequential activating pathways participate in rat liver and brain development and in thyroid modulation of mitochondrial metabolism and contribute to hypothyroid phenotype through complex I nitration. On the contrary, lack of NO disrupts pathways like S-nitrosylation or H(2)O(2) production and likewise is a gateway to disease in amyotrophic lateral sclerosis with superoxide dismutase 1 mutations or to cancer proliferation.


Asunto(s)
Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo , Transducción de Señal , Animales , Apoptosis , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Ciclo Celular/fisiología , Proliferación Celular , Humanos , Peróxido de Hidrógeno/metabolismo , Hipotiroidismo/metabolismo , Hipotiroidismo/fisiopatología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Óxido Nítrico Sintasa/metabolismo , Oxidación-Reducción , Ácido Peroxinitroso/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Neurotox Res ; 4(2): 141-5, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12829414

RESUMEN

Parkinson's disease (PD) is a worldwide neurodegenerative disorder. Although the etiology has been linked to genetic and environmental factors, curative treatment remains a challenge. Several hypotheses support different pathophysiological mechanisms related to oxidative stress, glutamate-mediated neurotoxicity, mitochondrial energetic impairment and nitric oxide (NO) over-production. Moreover, apoptotic mechanisms have been identified in PD. In this way, classical drugs such as amantadine, selegiline and dopamine agonists show only a modest neuroprotective effect. New strategies with enormous potential are now under development. These include neuroprotectants and agents that might rescue dopaminergic neurons. Glutamate receptor antagonists, neurotrophins, neuroimmunophilins, adenosine A2A receptor antagonists, iron-chelators and NO modulators, as well as caspase inhibitors have evident neuroprotective properties in experimental PD models.

15.
Am J Physiol Heart Circ Physiol ; 284(6): H2375-83, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12609820

RESUMEN

To preserve thermoneutrality, cold exposure is followed by changes in energy expenditure and basal metabolic rate (BMR). Because nitric oxide (NO) modulates mitochondrial O(2) uptake and energy levels, we analyzed cold effects (30 days at 4 degrees C) on rat liver and skeletal muscle mitochondrial NO synthases (mtNOS) and their putative impact on BMR. Cold exposure delimited two periods: A (days 1-10), with high systemic O(2) uptake and weight loss, and B (days 10-30), with lower O(2) uptake and fat deposition. mtNOS activity and expression decreased in period A and then increased in period B by 60-100% in liver and skeletal muscle (P < 0.05). Conversely, mitochondrial O(2) uptake remained initially high in the presence of l-arginine and later fell by 30-50% (P < 0.05). On this basis, the estimated fractional contribution of liver plus muscle to total BMR varied from 40% in period A to 25% in period B. The transitional modulation of mtNOS in rat cold acclimation could participate in adaptive responses that favor calorigenesis or conservative energy-saving mechanisms.


Asunto(s)
Aclimatación/fisiología , Frío , Metabolismo Energético/fisiología , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/fisiología , Mitocondrias Musculares/enzimología , Mitocondrias Musculares/fisiología , Óxido Nítrico Sintasa/metabolismo , Animales , Arginina/farmacología , Metabolismo Basal/fisiología , Western Blotting , Peso Corporal/fisiología , Inhibidores Enzimáticos/farmacología , Ácidos Grasos no Esterificados/sangre , Conducta Alimentaria/fisiología , Femenino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Norepinefrina/sangre , Consumo de Oxígeno/fisiología , Ratas , Ratas Sprague-Dawley
16.
Medicina (B.Aires) ; Medicina (B.Aires);58(4): 341-9, 1998.
Artículo en Español | LILACS | ID: lil-217512

RESUMEN

El síndrome de shock ha sido descripto en forma clásica como el producto de la disminución de la perfusión tisular y la disponibilidad de O2; sin embargo, en algunos tipos de shock como el séptico o el traumático ambos pueden hallarse aumentados en algunas circulaciones regionales. Hace ya una década se han descripto alteraciones mitocondriales consistentes en un desacomplamiento de la fosforilación oxidativa en el shock endotoxémico y hemorrágico experimentales y en el ser humano. Recientemente, el descubrimiento del óxido nítrico (NO) y su aumento en los estados de shock, ha abierto nuevas perspectivas en la comprensión del problema. El NO produce vasodilatación y al mismo tiempo, determina un aumento en la producción mitocondrial de especies activas del O(2), como del anión superóxido. Ambos radicales reaccionan entre sí y pueden formar otro oxidante con capacidad para nitrar residuos fenólicos de las proteínas: el peroxinitrito. Este efecto conlleva una alteración de la funcionalidad de diferentes enzimas mitocondriales como la succinato deshidrogenasa y la ATPasa y conduce a la disfunción mitocondrial, a una disminución de los niveles de compuestos de alta energia y a la insuficiencia multiorgánica. El aumento de la liberación de NO se debe al efecto de péptidos circulares y de neutrófilos adheridos al endotelio y a la indución por mediadores inflamatorios, como el TNF-alpha y las interleuquinas, de la NOS inducible (iNOS) en el endotelio y tejidos. Se propone que el estado de shock es la consecuencia de un disbalance entre el NO y el O(2) y sus metabolitos.


Asunto(s)
Humanos , Animales , Adenosina Trifosfatasas/metabolismo , Mediadores de Inflamación/metabolismo , Mitocondrias/enzimología , Neutrófilos/metabolismo , Choque/metabolismo , Comunicación Celular/fisiología , Mitocondrias/fisiología , Oxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Choque/fisiopatología , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA