Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9261, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649720

RESUMEN

We report on an all-fiber setup capable of generating complex intensity patterns using interference of few guided modes. Comprised by a few-mode fiber (FMF) spliced to a multimodal interference (MMI) fiber device, the setup allows for obtaining different output patterns upon adjusting the phases and intensities of the modes propagating in the FMF. We analyze the output patterns obtained when exciting two family modes in the MMI device using different phase and intensity conditions for the FMF modal base. Using this simple experimental arrangement we are able to produce complex intensity patterns with radial and azimuthal symmetry. Moreover, our results suggest that this approach provides a means to generate beams with orbital angular momentum (OAM).

2.
Polymers (Basel) ; 15(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36771805

RESUMEN

Optical fiber sensors incorporating luminescent materials are useful for detecting physical parameters and biochemical species. Fluorescent materials integrated on the tips of optical fibers, for example, provide a means to perform fluorescence thermometry while monitoring the intensity or the spectral variations of the fluorescence signal. Similarly, certain molecules can be tracked by monitoring their characteristic emission in the UV wavelength range. A key element for these sensing approaches is the luminescent composite, which may be obtained upon allocating luminescent nanomaterials in glass or polymer hosts. In this work, we explore the fluorescence features of two composites incorporating lanthanide-doped fluorescent powders using polydimethylsiloxane (PDMS) as a host. The composites are obtained by a simple mixing procedure and can be subsequently deposited onto the end faces of optical fibers via dip coating or molding. Whereas one of the composites has shown to be useful for the fabrication of fiber optic temperature sensors, the other shows promising result for detection of UV radiation. The performance of both composites is first evaluated for the fabrication of membranes by examining features such as fluorescent stability. We further explore the influence of parameters such as particle concentration and density on the fluorescence features of the polymer blends. Finally, we demonstrate the incorporation of these PDMS fluorescent composites onto optical fibers and evaluate their sensing capabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA