Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 623(7989): 949-955, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38030777

RESUMEN

Pyridinium electrolytes are promising candidates for flow-battery-based energy storage1-4. However, the mechanisms underlying both their charge-discharge processes and overall cycling stability remain poorly understood. Here we probe the redox behaviour of pyridinium electrolytes under representative flow battery conditions, offering insights into air tolerance of batteries containing these electrolytes while providing a universal physico-chemical descriptor of their reversibility. Leveraging a synthetic library of extended bispyridinium compounds, we track their performance over a wide range of potentials and identify the singlet-triplet free energy gap as a descriptor that successfully predicts the onset of previously unidentified capacity fade mechanisms. Using coupled operando nuclear magnetic resonance and electron paramagnetic resonance spectroscopies5,6, we explain the redox behaviour of these electrolytes and determine the presence of two distinct regimes (narrow and wide energy gaps) of electrochemical performance. In both regimes, we tie capacity fade to the formation of free radical species, and further show that π-dimerization plays a decisive role in suppressing reactivity between these radicals and trace impurities such as dissolved oxygen. Our findings stand in direct contrast to prevailing views surrounding the role of π-dimers in redox flow batteries1,4,7-11 and enable us to efficiently mitigate capacity fade from oxygen even on prolonged (days) exposure to air. These insights pave the way to new electrolyte systems, in which reactivity of reduced species is controlled by their propensity for intra- and intermolecular pairing of free radicals, enabling operation in air.

2.
Nature ; 592(7853): 225-231, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33828319

RESUMEN

Microporous polymers feature shape-persistent free volume elements (FVEs), which are permeated by small molecules and ions when used as membranes for chemical separations, water purification, fuel cells and batteries1-3. Identifying FVEs that have analyte specificity remains a challenge, owing to difficulties in generating polymers with sufficient diversity to enable screening of their properties. Here we describe a diversity-oriented synthetic strategy for microporous polymer membranes to identify candidates featuring FVEs that serve as solvation cages for lithium ions (Li+). This strategy includes diversification of bis(catechol) monomers by Mannich reactions to introduce Li+-coordinating functionality within FVEs, topology-enforcing polymerizations for networking FVEs into different pore architectures, and several on-polymer reactions for diversifying pore geometries and dielectric properties. The most promising candidate membranes featuring ion solvation cages exhibited both higher ionic conductivity and higher cation transference number than control membranes, in which FVEs were aspecific, indicating that conventional bounds for membrane permeability and selectivity for ion transport can be overcome4. These advantages are associated with enhanced Li+ partitioning from the electrolyte when cages are present, higher diffusion barriers for anions within pores, and network-enforced restrictions on Li+ coordination number compared to the bulk electrolyte, which reduces the effective mass of the working ion. Such membranes show promise as anode-stabilizing interlayers in high-voltage lithium metal batteries.

3.
Bioessays ; 46(7): e2400053, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713161

RESUMEN

Trypanosoma brucei is the causal agent of African Trypanosomiasis in humans and other animals. It maintains a long-term infection through an antigenic variation based population survival strategy. To proliferate in a mammal, T. brucei acquires iron and haem through the receptor mediated uptake of host transferrin and haptoglobin-hemoglobin respectively. The receptors are exposed to host antibodies but this does not lead to clearance of the infection. Here we discuss how the trypanosome avoids this fate in the context of recent findings on the structure and cell biology of the receptors.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei brucei/metabolismo , Humanos , Animales , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/parasitología , Haptoglobinas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/inmunología , Transferrina/metabolismo , Hemoglobinas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/inmunología , Interacciones Huésped-Parásitos/inmunología , Hierro/metabolismo , Anticuerpos Antiprotozoarios/inmunología
4.
Nucleic Acids Res ; 51(14): 7520-7540, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37309887

RESUMEN

Removal of the mRNA 5' cap primes transcripts for degradation and is central for regulating gene expression in eukaryotes. The canonical decapping enzyme Dcp2 is stringently controlled by assembly into a dynamic multi-protein complex together with the 5'-3'exoribonuclease Xrn1. Kinetoplastida lack Dcp2 orthologues but instead rely on the ApaH-like phosphatase ALPH1 for decapping. ALPH1 is composed of a catalytic domain flanked by C- and N-terminal extensions. We show that T. brucei ALPH1 is dimeric in vitro and functions within a complex composed of the trypanosome Xrn1 ortholog XRNA and four proteins unique to Kinetoplastida, including two RNA-binding proteins and a CMGC-family protein kinase. All ALPH1-associated proteins share a unique and dynamic localization to a structure at the posterior pole of the cell, anterior to the microtubule plus ends. XRNA affinity capture in T. cruzi recapitulates this interaction network. The ALPH1 N-terminus is not required for viability in culture, but essential for posterior pole localization. The C-terminus, in contrast, is required for localization to all RNA granule types, as well as for dimerization and interactions with XRNA and the CMGC kinase, suggesting possible regulatory mechanisms. Most significantly, the trypanosome decapping complex has a unique composition, differentiating the process from opisthokonts.


Asunto(s)
Endorribonucleasas , Caperuzas de ARN , Trypanosoma , Endorribonucleasas/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Trypanosoma/genética
5.
BMC Genomics ; 24(1): 471, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605127

RESUMEN

BACKGROUND: Protists of the family Trypanosomatidae (phylum Euglenozoa) have gained notoriety as parasites affecting humans, domestic animals, and agricultural plants. However, the true extent of the group's diversity spreads far beyond the medically and veterinary relevant species. We address several knowledge gaps in trypanosomatid research by undertaking sequencing, assembly, and analysis of genomes from previously overlooked representatives of this protistan group. RESULTS: We assembled genomes for twenty-one trypanosomatid species, with a primary focus on insect parasites and Trypanosoma spp. parasitizing non-human hosts. The assemblies exhibit sizes consistent with previously sequenced trypanosomatid genomes, ranging from approximately 18 Mb for Obscuromonas modryi to 35 Mb for Crithidia brevicula and Zelonia costaricensis. Despite being the smallest, the genome of O. modryi has the highest content of repetitive elements, contributing nearly half of its total size. Conversely, the highest proportion of unique DNA is found in the genomes of Wallacemonas spp., with repeats accounting for less than 8% of the assembly length. The majority of examined species exhibit varying degrees of aneuploidy, with trisomy being the most frequently observed condition after disomy. CONCLUSIONS: The genome of Obscuromonas modryi represents a very unusual, if not unique, example of evolution driven by two antidromous forces: i) increasing dependence on the host leading to genomic shrinkage and ii) expansion of repeats causing genome enlargement. The observed variation in somy within and between trypanosomatid genera suggests that these flagellates are largely predisposed to aneuploidy and, apparently, exploit it to gain a fitness advantage. High heterogeneity in the genome size, repeat content, and variation in chromosome copy numbers in the newly-sequenced species highlight the remarkable genome plasticity exhibited by trypanosomatid flagellates. These new genome assemblies are a robust foundation for future research on the genetic basis of life cycle changes and adaptation to different hosts in the family Trypanosomatidae.


Asunto(s)
Trypanosomatina , Animales , Trypanosomatina/genética , Tamaño del Genoma , Aclimatación , Agricultura , Aneuploidia
6.
BMC Biol ; 17(1): 11, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30732613

RESUMEN

BACKGROUND: Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. RESULTS: We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. CONCLUSIONS: Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the 'shopping bag' hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition.


Asunto(s)
Euglena gracilis/genética , Genoma , Proteoma , Transcriptoma , Núcleo Celular , Euglena gracilis/metabolismo , Plastidios
7.
PLoS Pathog ; 13(1): e1006055, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28125726

RESUMEN

African trypanosomes have complex life cycles comprising at least ten developmental forms, variously adapted to different niches in their tsetse fly vector and their mammalian hosts. Unlike many other protozoan pathogens, they are always extracellular and have evolved intricate surface coats that allow them to obtain nutrients while also protecting them from the immune defenses of either insects or mammals. The acquisition of macromolecular nutrients requires receptors that function within the context of these surface coats. The best understood of these is the haptoglobin-hemoglobin receptor (HpHbR) of Trypanosoma brucei, which is used by the mammalian bloodstream form of the parasite, allowing heme acquisition. However, in some primates it also provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. Recent studies have shown that during the evolution of African trypanosome species the receptor has diversified in function from a hemoglobin receptor predominantly expressed in the tsetse fly to a haptoglobin-hemoglobin receptor predominantly expressed in the mammalian bloodstream. Structural and functional studies of homologous receptors from different trypanosome species have allowed us to propose an evolutionary history for how one receptor has adapted to different roles in different trypanosome species. They also highlight the challenges that a receptor faces in operating on the complex trypanosome surface and show how these challenges can be met.


Asunto(s)
Inmunidad Innata , Proteínas Protozoarias/genética , Receptores de Superficie Celular/genética , Trypanosoma brucei brucei/inmunología , Tripanosomiasis Africana/inmunología , Moscas Tse-Tse/parasitología , Animales , Evolución Biológica , Humanos , Estadios del Ciclo de Vida , Modelos Moleculares , Primates , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología
8.
Nature ; 563(7729): 40-42, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30375500
9.
Angew Chem Int Ed Engl ; 57(31): 9694-9696, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29882366

RESUMEN

5-hydroxymethyluracil (5hmU) is formed through oxidation of thymine both enzymatically and non-enzymatically in various biological systems. Although 5hmU has been reported to affect biological processes such as protein-DNA interactions, the consequences of 5hmU formation in genomes have not been yet fully explored. Herein, we report a method to sequence 5hmU at single-base resolution. We employ chemical oxidation to transform 5hmU to 5-formyluracil (5fU), followed by the polymerase extension to induce T-to-C base changes owing to the inherent ability of 5fU to form 5fU:G base pairing. In combination with the Illumina next generation sequencing technology, we developed polymerase chain reaction (PCR) conditions to amplify the T-to-C base changes and demonstrate the method in three different synthetic oligonucleotide models as well as part of the genome of a 5hmU-rich eukaryotic pathogen. Our method has the potential capability to map 5hmU in genomic DNA and thus will contribute to promote the understanding of this modified base.

10.
PLoS Pathog ; 11(12): e1005259, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26719972

RESUMEN

Variations on the statement "the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.


Asunto(s)
Tripanosomiasis Africana/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/química , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Interacciones Huésped-Parásitos , Humanos , Conformación Proteica , Trypanosoma brucei brucei
11.
RNA Biol ; 14(5): 611-619, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-26786754

RESUMEN

Non-coding RNAs are crucial regulators for a vast array of cellular processes and have been implicated in human disease. These biological processes represent a hitherto untapped resource in our fight against disease. In this work we identify small molecule inhibitors of a non-coding RNA uridylylation pathway. The TUTase family of enzymes is important for modulating non-coding RNA pathways in both human cancer and pathogen systems. We demonstrate that this new class of drug target can be accessed with traditional drug discovery techniques. Using the Trypanosoma brucei TUTase, RET1, we identify TUTase inhibitors and lay the groundwork for the use of this new target class as a therapeutic opportunity for the under-served disease area of African Trypanosomiasis. In a broader sense this work demonstrates the therapeutic potential for targeting RNA post-transcriptional modifications with small molecules in human disease.


Asunto(s)
Descubrimiento de Drogas , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Edición de ARN/efectos de los fármacos , ARN Nucleotidiltransferasas/antagonistas & inhibidores , ARN no Traducido/biosíntesis , Tripanocidas/farmacología , Trypanosoma brucei brucei/enzimología , Humanos , Inhibidores de la Síntesis del Ácido Nucleico/química , Inhibidores de la Síntesis del Ácido Nucleico/uso terapéutico , Tripanocidas/química , Tripanocidas/uso terapéutico , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/tratamiento farmacológico , Uridina Trifosfato/metabolismo
12.
Exp Parasitol ; 180: 13-18, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28363776

RESUMEN

Research on trypanosomes as a model organism has provided a substantial contribution to a detailed understanding of basic cellular processes within the last few years. At the same time, major advances in super-resolution microscopy have been achieved, facilitating the resolution of biological structures in living cells at a scale of a few nm. However, the motility of trypanosomes has prevented access to high resolution microscopy of live cells. Here, we present a hydrogel based on poly(ethylene glycol) functionalized with either norbornene or thiol moieties for UV induced thiol-ene crosslinking for the embedding and imaging of live trypanosomes. The resulting gel exhibits low autofluorescence properties, immobilizes the cells efficiently on the nanometer scale and is compatible with cell viability for up to one hour at 24 °C. We applied super-resolution imaging to the inner plasma membrane leaflet using lipid-anchored eYFP as a probe. We find specific domains within the membrane where the fluorescence either accumulates or appears diluted rather than being homogenously distributed. Based on a Ripley's analysis, the size of the domains was determined to be raccumulated=170±5 nm and rdilute>115±15 nm. We hypothesize that this structuring of the membrane is associated with the underlying cytoskeleton.


Asunto(s)
Trypanosoma brucei brucei/ultraestructura , Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Membrana Celular/ultraestructura , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Hidrogeles , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/genética
13.
Nucleic Acids Res ; 43(16): 8013-32, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26187993

RESUMEN

RNP granules are ribonucleoprotein assemblies that regulate the post-transcriptional fate of mRNAs in all eukaryotes. Their exact function remains poorly understood, one reason for this is that RNP granule purification has not yet been achieved. We have exploited a unique feature of trypanosomes to prepare a cellular fraction highly enriched in starvation stress granules. First, granules remain trapped within the cage-like, subpellicular microtubule array of the trypanosome cytoskeleton while soluble proteins are washed away. Second, the microtubules are depolymerized and the granules are released. RNA sequencing combined with single molecule mRNA FISH identified the short and highly abundant mRNAs encoding ribosomal mRNAs as being excluded from granules. By mass spectrometry we have identified 463 stress granule candidate proteins. For 17/49 proteins tested by eYFP tagging we have confirmed the localization to granules, including one phosphatase, one methyltransferase and two proteins with a function in trypanosome life-cycle regulation. The novel method presented here enables the unbiased identification of novel RNP granule components, paving the way towards an understanding of RNP granule function.


Asunto(s)
Gránulos Citoplasmáticos/química , Proteínas Protozoarias/análisis , Ribonucleoproteínas/análisis , Fraccionamiento Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Microtúbulos , Proteínas Protozoarias/genética , ARN Mensajero/análisis , Proteínas Ribosómicas/genética , Fracciones Subcelulares , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética
14.
Adv Exp Med Biol ; 979: 125-140, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28429320

RESUMEN

Euglena gracilis is a major component of the aquatic ecosystem and together with closely related species, is ubiquitous worldwide. Euglenoids are an important group of protists, possessing a secondarily acquired plastid and are relatives to the Kinetoplastidae, which themselves have global impact as disease agents. To understand the biology of E. gracilis, as well as to provide further insight into the evolution and origins of the Kinetoplastidae, we embarked on sequencing the nuclear genome; the plastid and mitochondrial genomes are already in the public domain. Earlier studies suggested an extensive nuclear DNA content, with likely a high degree of repetitive sequence, together with significant extrachromosomal elements. To produce a list of coding sequences we have combined transcriptome data from both published and new sources, as well as embarked on de novo sequencing using a combination of 454, Illumina paired end libraries and long PacBio reads. Preliminary analysis suggests a surprisingly large genome approaching 2 Gbp, with a highly fragmented architecture and extensive repeat composition. Over 80% of the RNAseq reads from E. gracilis maps to the assembled genome sequence, which is comparable with the well assembled genomes of T. brucei and T. cruzi. In order to achieve this level of assembly we employed multiple informatics pipelines, which are discussed here. Finally, as a preliminary view of the genome architecture, we discuss the tubulin and calmodulin genes, which highlight potential novel splicing mechanisms.


Asunto(s)
Núcleo Celular , ADN Protozoario , Euglena gracilis/fisiología , Genoma de Protozoos/fisiología , Mitocondrias , Plastidios , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN Protozoario/genética , ADN Protozoario/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Plastidios/genética , Plastidios/metabolismo
15.
Proc Natl Acad Sci U S A ; 111(20): E2130-9, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24808134

RESUMEN

ApolipoproteinL1 (APOL1) protects humans and some primates against several African trypanosomes. APOL1 genetic variants strongly associated with kidney disease in African Americans have additional trypanolytic activity against Trypanosoma brucei rhodesiense, the cause of acute African sleeping sickness. We combined genetic, physiological, and biochemical studies to explore coevolution between the APOL1 gene and trypanosomes. We analyzed the APOL1 sequence in modern and archaic humans and baboons along with geographic distribution in present day Africa to understand how the kidney risk variants evolved. Then, we tested Old World monkey, human, and engineered APOL1 variants for their ability to kill human infective trypanosomes in vivo to identify the molecular mechanism whereby human trypanolytic APOL1 variants evade T. brucei rhodesiense virulence factor serum resistance-associated protein (SRA). For one APOL1 kidney risk variant, a two-residue deletion of amino acids 388 and 389 causes a shift in a single lysine residue that mimics the Old World monkey sequence, which augments trypanolytic activity by preventing SRA binding. A second human APOL1 kidney risk allele, with an amino acid substitution that also restores sequence alignment with Old World monkeys, protected against T. brucei rhodesiense due in part to reduced SRA binding. Both APOL1 risk variants induced tissue injury in murine livers, the site of transgenic gene expression. Our study shows that both genetic variants of human APOL1 that protect against T. brucei rhodesiense have recapitulated molecular signatures found in Old World monkeys and raises the possibility that APOL1 variants have broader innate immune activity that extends beyond trypanosomes.


Asunto(s)
Apolipoproteínas/genética , Evolución Biológica , Resistencia a la Enfermedad/genética , Lipoproteínas HDL/genética , Tripanosomiasis Africana/genética , África , Alelos , Animales , Apolipoproteína L1 , Apolipoproteínas/fisiología , Frecuencia de los Genes , Geografía , Haplotipos , Humanos , Lipoproteínas HDL/fisiología , Lisina/genética , Mandrillus , Ratones , Ratones Transgénicos , Modelos Teóricos , Papio/genética , Polimorfismo Genético , Trypanosoma brucei rhodesiense
16.
Cell Microbiol ; 17(10): 1523-35, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25924022

RESUMEN

African trypanosomes infect a broad range of mammals, but humans and some higher primates are protected by serum trypanosome lytic factors that contain apolipoprotein L1 (ApoL1). In the human-infective subspecies of Trypanosoma brucei, Trypanosoma brucei rhodesiense, a gene product derived from the variant surface glycoprotein gene family member, serum resistance-associated protein (SRA protein), protects against ApoL1-mediated lysis. Protection against trypanosome lytic factor requires the direct interaction between SRA protein and ApoL1 within the endocytic apparatus of the trypanosome, but some uncertainty remains as to the precise mechanism and location of this interaction. In order to provide more insight into the mechanism of SRA-mediated resistance to trypanosome lytic factor, we assessed the localization of SRA in T. b. rhodesiense EATRO3 using a novel monoclonal antibody raised against SRA together with a set of well-characterized endosomal markers. By three-dimensional deconvolved immunofluorescence single-cell analysis, combined with double-labelling immunoelectron microscopy, we found that ≈ 50% of SRA protein localized to the lysosome, with the remaining population being distributed through the endocytic pathway, but apparently absent from the flagellar pocket membrane. These data suggest that the SRA/trypanolytic factor interaction is intracellular, with the concentration within the endosomes potentially crucial for ensuring a high efficiency.


Asunto(s)
Endosomas/química , Lisosomas/química , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/genética , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/química , Trypanosoma brucei rhodesiense/química , Animales , Apolipoproteína L1 , Apolipoproteínas/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei rhodesiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/inmunología
17.
Nucleic Acids Res ; 42(11): 7201-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24813448

RESUMEN

We have compared the transcriptomes of cultured procyclic Trypanosoma brucei cells in early and late logarithmic phases and found that ∼200 mRNAs were differentially regulated. In late log phase cells, the most upregulated mRNA encoded the nucleobase transporter NT8. The 3' untranslated region (UTR) of NT8 contains a short stem-loop cis-element that is necessary for the regulation of NT8 expression in response to external purine levels. When placed in the 3'-UTR of an unregulated transcript, the cis-element is sufficient to confer regulation in response to purines. To our knowledge, this is the first example of a discrete RNA element that can autonomously regulate gene expression in trypanosomes in response to an external factor and reveals an unprecedented purine-dependent signaling pathway that controls gene expression in eukaryotes.


Asunto(s)
Regiones no Traducidas 3' , Proteínas de Transporte de Nucleobases/genética , Proteínas Protozoarias/genética , Secuencias Reguladoras de Ácido Ribonucleico , Trypanosoma brucei brucei/genética , Regulación de la Expresión Génica , Conformación de Ácido Nucleico , Proteínas de Transporte de Nucleobases/metabolismo , Proteínas Protozoarias/metabolismo , Purinas/metabolismo , ARN Mensajero/metabolismo , Transcriptoma , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(5): 1905-10, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319650

RESUMEN

African trypanosomes are protected by a densely packed surface monolayer of variant surface glycoprotein (VSG). A haptoglobin-hemoglobin receptor (HpHbR) within this VSG coat mediates heme acquisition. HpHbR is also exploited by the human host to mediate endocytosis of trypanolytic factor (TLF)1 from serum, contributing to innate immunity. Here, the crystal structure of HpHbR from Trypanosoma congolense has been solved, revealing an elongated three α-helical bundle with a small membrane distal head. To understand the receptor in the context of the VSG layer, the dimensions of Trypanosoma brucei HpHbR and VSG have been determined by small-angle X-ray scattering, revealing the receptor to be more elongated than VSG. It is, therefore, likely that the receptor protrudes above the VSG layer and unlikely that the VSG coat can prevent immunoglobulin binding to the receptor. The HpHb-binding site has been mapped by single-residue mutagenesis and surface plasmon resonance. This site is located where it is readily accessible above the VSG layer. A single HbHpR polymorphism unique to human infective T. brucei gambiense has been shown to be sufficient to reduce binding of both HpHb and TLF1, modulating ligand affinity in a delicate balancing act that allows nutrient acquisition but avoids TLF1 uptake.


Asunto(s)
Endocitosis/inmunología , Inmunidad Innata/inmunología , Receptores de Superficie Celular/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Interacciones Huésped-Parásitos/inmunología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei brucei/fisiología , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei gambiense/fisiología , Trypanosoma congolense/genética , Trypanosoma congolense/inmunología , Trypanosoma congolense/fisiología , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/química , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Difracción de Rayos X
19.
PLoS Pathog ; 9(8): e1003566, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990786

RESUMEN

In Trypanosoma brucei, glycosylphosphatidylinositol phospholipase C (GPI-PLC) is a virulence factor that releases variant surface glycoprotein (VSG) from dying cells. In live cells, GPI-PLC is localised to the plasma membrane where it is concentrated on the flagellar membrane, so activity or access must be tightly regulated as very little VSG is shed. Little is known about regulation except that acylation within a short internal motif containing three cysteines is necessary for GPI-PLC to access VSG in dying cells. Here, GPI-PLC mutants have been analysed both for subcellular localisation and for the ability to release VSG from dying cells. Two sequence determinants necessary for concentration on the flagellar membrane were identified. First, all three cysteines are required for full concentration on the flagellar membrane. Mutants with two cysteines localise predominantly to the plasma membrane but lose some of their flagellar concentration, while mutants with one cysteine are mainly localised to membranes between the nucleus and flagellar pocket. Second, a proline residue close to the C-terminus, and distant from the acylated cysteines, is necessary for concentration on the flagellar membrane. The localisation of GPI-PLC to the plasma but not flagellar membrane is necessary for access to the VSG in dying cells. Cellular structures necessary for concentration on the flagellar membrane were identified by depletion of components. Disruption of the flagellar pocket collar caused loss of concentration whereas detachment of the flagellum from the cell body after disruption of the flagellar attachment zone did not. Thus, targeting to the flagellar membrane requires: a titratable level of acylation, a motif including a proline, and a functional flagellar pocket. These results provide an insight into how the segregation of flagellar membrane proteins from those present in the flagellar pocket and cell body membranes is achieved.


Asunto(s)
Membrana Celular/enzimología , Flagelos/enzimología , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Oligosacáridos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/enzimología , Animales , Línea Celular , Membrana Celular/genética , Flagelos/genética , Glicosilfosfatidilinositol Diacilglicerol-Liasa/genética , Ratones , Ratones Noqueados , Mutación , Oligosacáridos/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética
20.
RNA Biol ; 12(3): 305-19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826663

RESUMEN

In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation.


Asunto(s)
Factor 4A Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/genética , Leishmania major/genética , Iniciación de la Cadena Peptídica Traduccional , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Secuencia de Aminoácidos , Sitios de Unión , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Leishmania major/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Trypanosoma brucei brucei/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA