Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 173(6): 1398-1412.e22, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29731168

RESUMEN

Noncoding mutations in cancer genomes are frequent but challenging to interpret. PVT1 encodes an oncogenic lncRNA, but recurrent translocations and deletions in human cancers suggest alternative mechanisms. Here, we show that the PVT1 promoter has a tumor-suppressor function that is independent of PVT1 lncRNA. CRISPR interference of PVT1 promoter enhances breast cancer cell competition and growth in vivo. The promoters of the PVT1 and the MYC oncogenes, located 55 kb apart on chromosome 8q24, compete for engagement with four intragenic enhancers in the PVT1 locus, thereby allowing the PVT1 promoter to regulate pause release of MYC transcription. PVT1 undergoes developmentally regulated monoallelic expression, and the PVT1 promoter inhibits MYC expression only from the same chromosome via promoter competition. Cancer genome sequencing identifies recurrent mutations encompassing the human PVT1 promoter, and genome editing verified that PVT1 promoter mutation promotes cancer cell growth. These results highlight regulatory sequences of lncRNA genes as potential disease-associated DNA elements.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Genes myc , ARN Largo no Codificante/genética , Animales , Neoplasias de la Mama/metabolismo , Sistemas CRISPR-Cas , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Cromatina , ADN de Neoplasias/genética , Elementos de Facilitación Genéticos , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Mutación , Trasplante de Neoplasias , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Transcripción Genética
2.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241615

RESUMEN

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Asunto(s)
Desarrollo Óseo/fisiología , Huesos/citología , Células Madre Hematopoyéticas/citología , Animales , Huesos/metabolismo , Cartílago/citología , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual/métodos , Células Madre/citología , Células del Estroma/citología , Transcriptoma/genética
3.
Nature ; 563(7732): 514-521, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30356216

RESUMEN

During both embryonic development and adult tissue regeneration, changes in chromatin structure driven by master transcription factors lead to stimulus-responsive transcriptional programs. A thorough understanding of how stem cells in the skeleton interpret mechanical stimuli and enact regeneration would shed light on how forces are transduced to the nucleus in regenerative processes. Here we develop a genetically dissectible mouse model of mandibular distraction osteogenesis-which is a process that is used in humans to correct an undersized lower jaw that involves surgically separating the jaw bone, which elicits new bone growth in the gap. We use this model to show that regions of newly formed bone are clonally derived from stem cells that reside in the skeleton. Using chromatin and transcriptional profiling, we show that these stem-cell populations gain activity within the focal adhesion kinase (FAK) signalling pathway, and that inhibiting FAK abolishes new bone formation. Mechanotransduction via FAK in skeletal stem cells during distraction activates a gene-regulatory program and retrotransposons that are normally active in primitive neural crest cells, from which skeletal stem cells arise during development. This reversion to a developmental state underlies the robust tissue growth that facilitates stem-cell-based regeneration of adult skeletal tissue.


Asunto(s)
Regeneración Ósea , Mandíbula/citología , Mandíbula/fisiología , Cresta Neural/citología , Osteogénesis por Distracción , Células Madre/citología , Animales , Cromatina/genética , Cromatina/metabolismo , Modelos Animales de Enfermedad , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación de la Expresión Génica , Masculino , Mandíbula/cirugía , Ratones , Ratones Endogámicos C57BL , Retroelementos/genética , Transducción de Señal , Células Madre/metabolismo , Transcripción Genética
4.
Nature ; 535(7613): 575-9, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27437574

RESUMEN

X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions,remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes indifferent neural progenitor clones are associated with the presence of different TAD-like structures after XCI. These findings suggest a key role for transcription and CTCF in the formation of TADs in the context of the Xi chromosome in neural progenitors.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Alelos , Animales , Sitios de Unión , Factor de Unión a CCCTC , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromosomas de los Mamíferos/química , Cromosomas de los Mamíferos/genética , Células Madre Embrionarias/metabolismo , Femenino , Silenciador del Gen , Masculino , Ratones , Células-Madre Neurales/metabolismo , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Análisis de Secuencia , Transcripción Genética , Cromosoma X/química , Cromosoma X/genética , Inactivación del Cromosoma X/genética
5.
Nat Methods ; 14(10): 959-962, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846090

RESUMEN

We present Omni-ATAC, an improved ATAC-seq protocol for chromatin accessibility profiling that works across multiple applications with substantial improvement of signal-to-background ratio and information content. The Omni-ATAC protocol generates chromatin accessibility profiles from archival frozen tissue samples and 50-µm sections, revealing the activities of disease-associated DNA elements in distinct human brain structures. The Omni-ATAC protocol enables the interrogation of personal regulomes in tissue context and translational studies.


Asunto(s)
ADN/genética , Congelación , Genoma , Manejo de Especímenes/métodos , Animales , Encéfalo , Línea Celular , Eritrocitos , Regulación Enzimológica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Queratinocitos , Ratones , Replicación de Secuencia Autosostenida , Neoplasias de la Tiroides , Transposasas/metabolismo
6.
Nat Methods ; 13(12): 1013-1020, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27749837

RESUMEN

Spatial organization of the genome plays a central role in gene expression, DNA replication, and repair. But current epigenomic approaches largely map DNA regulatory elements outside of the native context of the nucleus. Here we report assay of transposase-accessible chromatin with visualization (ATAC-see), a transposase-mediated imaging technology that employs direct imaging of the accessible genome in situ, cell sorting, and deep sequencing to reveal the identity of the imaged elements. ATAC-see revealed the cell-type-specific spatial organization of the accessible genome and the coordinated process of neutrophil chromatin extrusion, termed NETosis. Integration of ATAC-see with flow cytometry enables automated quantitation and prospective cell isolation as a function of chromatin accessibility, and it reveals a cell-cycle dependence of chromatin accessibility that is especially dynamic in G1 phase. The integration of imaging and epigenomics provides a general and scalable approach for deciphering the spatiotemporal architecture of gene control.


Asunto(s)
Cromatina/genética , Colorantes Fluorescentes/química , Genoma Humano , Compuestos Heterocíclicos de 4 o más Anillos/química , Secuenciación de Nucleótidos de Alto Rendimiento , Transposasas/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Elementos Transponibles de ADN/genética , Epigénesis Genética , Citometría de Flujo , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Neutrófilos/metabolismo , Coloración y Etiquetado , Transposasas/genética
8.
Nat Chem Biol ; 10(8): 632-639, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24952596

RESUMEN

The reprogramming of somatic cells to pluripotency using defined transcription factors holds great promise for biomedicine. However, human reprogramming remains inefficient and relies either on the use of the potentially dangerous oncogenes KLF4 and CMYC or the genetic inhibition of the tumor suppressor gene p53. We hypothesized that inhibition of signal transduction pathways that promote differentiation of the target somatic cells during development might relieve the requirement for non-core pluripotency factors during induced pluripotent stem cell (iPSC) reprogramming. Here, we show that inhibition of Notch greatly improves the efficiency of iPSC generation from mouse and human keratinocytes by suppressing p21 in a p53-independent manner and thereby enriching for undifferentiated cells capable of long-term self-renewal. Pharmacological inhibition of Notch enabled routine production of human iPSCs without KLF4 and CMYC while leaving p53 activity intact. Thus, restricting the development of somatic cells by altering intercellular communication enables the production of safer human iPSCs.


Asunto(s)
Oncogenes/fisiología , Células Madre Pluripotentes/fisiología , Receptores Notch/antagonistas & inhibidores , Animales , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dipéptidos/farmacología , Genes myc , Genes p53 , N-Metiltransferasa de Histona-Lisina , Humanos , Queratinocitos/efectos de los fármacos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Nat Neurosci ; 25(10): 1353-1365, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171426

RESUMEN

The precise regulation of gene expression is fundamental to neurodevelopment, plasticity and cognitive function. Although several studies have profiled transcription in the developing human brain, there is a gap in understanding of accompanying translational regulation. In this study, we performed ribosome profiling on 73 human prenatal and adult cortex samples. We characterized the translational regulation of annotated open reading frames (ORFs) and identified thousands of previously unknown translation events, including small ORFs that give rise to human-specific and/or brain-specific microproteins, many of which we independently verified using proteomics. Ribosome profiling in stem-cell-derived human neuronal cultures corroborated these findings and revealed that several neuronal activity-induced non-coding RNAs encode previously undescribed microproteins. Physicochemical analysis of brain microproteins identified a class of proteins that contain arginine-glycine-glycine (RGG) repeats and, thus, may be regulators of RNA metabolism. This resource expands the known translational landscape of the human brain and illuminates previously unknown brain-specific protein products.


Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas , Adulto , Arginina/genética , Arginina/metabolismo , Encéfalo/metabolismo , Glicina , Humanos , ARN Mensajero/metabolismo
10.
Nat Commun ; 12(1): 5330, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504093

RESUMEN

Most autosomal genes are thought to be expressed from both alleles, with some notable exceptions, including imprinted genes and genes showing random monoallelic expression (RME). The extent and nature of RME has been the subject of debate. Here we investigate the expression of several candidate RME genes in F1 hybrid mouse cells before and after differentiation, to define how they become persistently, monoallelically expressed. Clonal monoallelic expression is not present in embryonic stem cells, but we observe high frequencies of monoallelism in neuronal progenitor cells by assessing expression status in more than 200 clones. We uncover unforeseen modes of allelic expression that appear to be gene-specific and epigenetically regulated. This non-canonical allelic regulation has important implications for development and disease, including autosomal dominant disorders and opens up therapeutic perspectives.


Asunto(s)
Alelos , Desequilibrio Alélico , Epigénesis Genética , Enfermedades Musculares/genética , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/genética , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Diferenciación Celular , Quimera , Células Clonales , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Dosificación de Gen , Frecuencia de los Genes , Sitios Genéticos , Impresión Genómica , Masculino , Ratones , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Células-Madre Neurales/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Receptor de Ácido Kaínico GluK2
11.
Nat Neurosci ; 24(3): 437-448, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33542524

RESUMEN

Neuronal activity-dependent gene expression is essential for brain development. Although transcriptional and epigenetic effects of neuronal activity have been explored in mice, such an investigation is lacking in humans. Because alterations in GABAergic neuronal circuits are implicated in neurological disorders, we conducted a comprehensive activity-dependent transcriptional and epigenetic profiling of human induced pluripotent stem cell-derived GABAergic neurons similar to those of the early developing striatum. We identified genes whose expression is inducible after membrane depolarization, some of which have specifically evolved in primates and/or are associated with neurological diseases, including schizophrenia and autism spectrum disorder (ASD). We define the genome-wide profile of human neuronal activity-dependent enhancers, promoters and the transcription factors CREB and CRTC1. We found significant heritability enrichment for ASD in the inducible promoters. Our results suggest that sequence variation within activity-inducible promoters of developing human forebrain GABAergic neurons contributes to ASD risk.


Asunto(s)
Encéfalo/metabolismo , Epigénesis Genética , Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Regiones Promotoras Genéticas
12.
Elife ; 92020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32379046

RESUMEN

The Xist lncRNA mediates X chromosome inactivation (XCI). Here we show that Spen, an Xist-binding repressor protein essential for XCI , binds to ancient retroviral RNA, performing a surveillance role to recruit chromatin silencing machinery to these parasitic loci. Spen loss activates a subset of endogenous retroviral (ERV) elements in mouse embryonic stem cells, with gain of chromatin accessibility, active histone modifications, and ERV RNA transcription. Spen binds directly to ERV RNAs that show structural similarity to the A-repeat of Xist, a region critical for Xist-mediated gene silencing. ERV RNA and Xist A-repeat bind the RRM domains of Spen in a competitive manner. Insertion of an ERV into an A-repeat deficient Xist rescues binding of Xist RNA to Spen and results in strictly local gene silencing in cis. These results suggest that Xist may coopt transposable element RNA-protein interactions to repurpose powerful antiviral chromatin silencing machinery for sex chromosome dosage compensation.


The genetic material inside cells is often packaged into thread-like structures called chromosomes. In humans, mice and other mammals, a pair of sex chromosomes determines the genetic or chromosomal sex of each individual. Those who inherit two "X" chromosomes are said to be chromosomally female, while chromosomal males have one "X" and one "Y" chromosome. This means females have twice as many copies of genes on the X chromosome as a male does, which turns out to be double the number that the body needs. To solve this problem, mammals have developed a strategy known as dosage compensation. The second X chromosome in females becomes "silent": its DNA remains unchanged, but none of the genes are active. A long noncoding RNA molecule called Xist is responsible for switching off the extra X genes in female cells. It does this by coating the entirety of the second X chromosome. Normally, RNA molecules transmit the coded instructions in genes to the cellular machinery that manufactures proteins. "Noncoding" RNAs like Xist, however, are RNAs that have taken on different jobs inside the cell. Researchers believe that the ancestral Xist gene may have once encoded a protein but changed over time to produce only a noncoding RNA. Carter, Xu et al. therefore set out to find out how exactly this might have happened, and also how Xist might have acquired its ability to switch genes off. Initial experiments used mouse cells grown in the laboratory, in which a protein called Spen was deleted. Spen is known to help Xist silence the X chromosome. In female cells lacking Spen, the second X chromosome remained active. Other chromosomes in male and female cells also had stretches of DNA that became active upon Spen's removal. These DNA sequences, termed endogenous retroviruses, were remnants of ancestral viral infections. In other words, Spen normally acted as an antiviral defense. Analysis of genetic sequences showed that Spen recognized endogenous retrovirus sequences resembling a key region in Xist, a region which was needed for Xist to work properly. Inserting fragments of endogenous retroviruses into a defective version of Xist lacking this region also partially restored its ability to inactivate genes, suggesting that X chromosome silencing might work by hijacking cellular defenses against viruses. That is, female cells essentially 'pretend' there is a viral infection on the second X chromosome by coating it with Xist (which mimics endogenous retroviruses), thus directing Spen to shut it down. This research is an important step towards understanding how female cells carry out dosage compensation in mammals. More broadly, it sheds new light on how ancient viruses may have shaped the evolution of noncoding RNAs in the human genome.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Retrovirus Endógenos/genética , Células Madre Embrionarias de Ratones/virología , ARN Largo no Codificante/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Inactivación del Cromosoma X , Cromosoma X , Animales , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN/genética , Compensación de Dosificación (Genética) , Retrovirus Endógenos/metabolismo , Femenino , Interacciones Huésped-Patógeno , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica , ARN Largo no Codificante/genética , ARN Viral/genética , Proteínas de Unión al ARN/genética
13.
Philos Trans R Soc Lond B Biol Sci ; 372(1733)2017 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-28947655

RESUMEN

X-chromosome inactivation (XCI) is a critical epigenetic mechanism for balancing gene dosage between XY males and XX females in eutherian mammals. A long non-coding RNA (lncRNA), XIST, and its associated proteins orchestrate this multi-step process, resulting in the inheritable silencing of one of the two X-chromosomes in females. The XIST RNA is large and complex, exemplifying the unique challenges associated with the structural and functional analysis of lncRNAs. Recent technological advances in the analysis of macromolecular structure and interactions have enabled us to systematically dissect the XIST ribonucleoprotein complex, which is larger than the ribosome, and its place of action, the inactive X-chromosome. These studies shed light on key mechanisms of XCI, such as XIST coating of the X-chromosome, recruitment of DNA, RNA and histone modification enzymes, and compaction and compartmentalization of the inactive X. Here, we summarize recent studies on XCI, highlight the critical contributions of new technologies and propose a unifying model for XIST function in XCI where modular domains serve as the structural and functional units in both lncRNA-protein complexes and DNA-protein complexes in chromatin.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.


Asunto(s)
Cromatina/metabolismo , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X , Cromosoma X/genética , Animales , Cromosomas Humanos X/genética , Femenino , Humanos , Ratones , Modelos Genéticos
14.
Elife ; 62017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29251591

RESUMEN

Cells of multi-cellular organisms evolve toward uni-cellularity in the form of cancer and, if humans intervene, continue to evolve in cell culture. During this process, gene dosage relationships may evolve in novel ways to cope with the new environment and may regress back to the ancestral uni-cellular state. In this context, the evolution of sex chromosomes vis-a-vis autosomes is of particular interest. Here, we report the chromosomal evolution in ~ 600 cancer cell lines. Many of them jettisoned either Y or the inactive X; thus, free-living male and female cells converge by becoming 'de-sexualized'. Surprisingly, the active X often doubled, accompanied by the addition of one haploid complement of autosomes, leading to an X:A ratio of 2:3 from the extant ratio of 1:2. Theoretical modeling of the frequency distribution of X:A karyotypes suggests that the 2:3 ratio confers a higher fitness and may reflect aspects of sex chromosome evolution.


Asunto(s)
Adaptación Biológica , Proliferación Celular , Cromosomas Humanos , Cromosomas Sexuales , Línea Celular Tumoral , Evolución Molecular , Humanos , Cariotipo
15.
Nat Genet ; 49(3): 377-386, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28112738

RESUMEN

We developed an allele-specific assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to genotype and profile active regulatory DNA across the genome. Using a mouse hybrid F1 system, we found that monoallelic DNA accessibility across autosomes was pervasive, developmentally programmed and composed of several patterns. Genetically determined accessibility was enriched at distal enhancers, but random monoallelically accessible (RAMA) elements were enriched at promoters and may act as gatekeepers of monoallelic mRNA expression. Allelic choice at RAMA elements was stable across cell generations and bookmarked through mitosis. RAMA elements in neural progenitor cells were biallelically accessible in embryonic stem cells but premarked with bivalent histone modifications; one allele was silenced during differentiation. Quantitative analysis indicated that allelic choice at the majority of RAMA elements is consistent with a stochastic process; however, up to 30% of RAMA elements may deviate from the expected pattern, suggesting a regulated or counting mechanism.


Asunto(s)
ADN/genética , Células Madre Embrionarias de Ratones/fisiología , Células-Madre Neurales/fisiología , Células Madre/fisiología , Alelos , Animales , Diferenciación Celular/genética , Línea Celular , Cromatina/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética
16.
Stem Cell Reports ; 2(2): 119-26, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24527385

RESUMEN

It has been suggested that the transcription factor Nanog is essential for the establishment of pluripotency during the derivation of embryonic stem cells and induced pluripotent stem cells (iPSCs). However, successful reprogramming to pluripotency with a growing list of divergent transcription factors, at ever-increasing efficiencies, suggests that there may be many distinct routes to a pluripotent state. Here, we have investigated whether Nanog is necessary for reprogramming murine fibroblasts under highly efficient conditions using the canonical-reprogramming factors Oct4, Sox2, Klf4, and cMyc. In agreement with prior results, the efficiency of reprogramming Nanog (-/-) fibroblasts was significantly lower than that of control fibroblasts. However, in contrast to previous findings, we were able to reproducibly generate iPSCs from Nanog (-/-) fibroblasts that effectively contributed to the germline of chimeric mice. Thus, whereas Nanog may be an important mediator of reprogramming, it is not required for establishing pluripotency in the mouse, even under standard conditions.


Asunto(s)
Reprogramación Celular/genética , Proteínas de Homeodominio/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Diferenciación Celular/genética , Quimera/genética , Análisis por Conglomerados , Femenino , Fibroblastos/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factor 4 Similar a Kruppel , Masculino , Ratones , Proteína Homeótica Nanog , Fenotipo , Factores de Transcripción/genética , Transcriptoma , Transducción Genética
17.
Cell Stem Cell ; 15(6): 707-19, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25456834

RESUMEN

N6-methyl-adenosine (m(6)A) is the most abundant modification on messenger RNAs and is linked to human diseases, but its functions in mammalian development are poorly understood. Here we reveal the evolutionary conservation and function of m(6)A by mapping the m(6)A methylome in mouse and human embryonic stem cells. Thousands of messenger and long noncoding RNAs show conserved m(6)A modification, including transcripts encoding core pluripotency transcription factors. m(6)A is enriched over 3' untranslated regions at defined sequence motifs and marks unstable transcripts, including transcripts turned over upon differentiation. Genetic inactivation or depletion of mouse and human Mettl3, one of the m(6)A methylases, led to m(6)A erasure on select target genes, prolonged Nanog expression upon differentiation, and impaired ESC exit from self-renewal toward differentiation into several lineages in vitro and in vivo. Thus, m(6)A is a mark of transcriptome flexibility required for stem cells to differentiate to specific lineages.


Asunto(s)
Adenina/análogos & derivados , Células Madre Embrionarias/fisiología , Proteínas de Homeodominio/metabolismo , Metiltransferasas/metabolismo , Adenina/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/genética , Proliferación Celular/genética , Secuencia Conservada/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Metiltransferasas/genética , Ratones , Ratones SCID , Datos de Secuencia Molecular , Mutación/genética , Proteína Homeótica Nanog , Procesamiento Postranscripcional del ARN/genética , ARN Interferente Pequeño/genética , Transcriptoma
20.
Cell Stem Cell ; 5(5): 491-503, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19818703

RESUMEN

The combined activity of three transcription factors can reprogram adult cells into induced pluripotent stem cells (iPSCs). However, the transgenic methods used for delivering reprogramming factors have raised concerns regarding the future utility of the resulting stem cells. These uncertainties could be overcome if each transgenic factor were replaced with a small molecule that either directly activated its expression from the somatic genome or in some way compensated for its activity. To this end, we have used high-content chemical screening to identify small molecules that can replace Sox2 in reprogramming. We show that one of these molecules functions in reprogramming by inhibiting Tgf-beta signaling in a stable and trapped intermediate cell type that forms during the process. We find that this inhibition promotes the completion of reprogramming through induction of the transcription factor Nanog.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Factores de Transcripción SOXB1/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales , Benzamidas/farmacología , Línea Celular , Transdiferenciación Celular , Dioxoles/farmacología , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/patología , Ratones , Proteína Homeótica Nanog , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Factores de Transcripción SOXB1/genética , Transducción de Señal , Transducción Genética , Factor de Crecimiento Transformador beta/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA