Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39026810

RESUMEN

The prenatal environment can alter neurodevelopmental and clinical trajectories, markedly increasing risk for psychiatric disorders in childhood and adolescence. To understand if and how fetal exposures to stress and inflammation exacerbate manifestation of genetic risk for complex brain disorders, we report a large-scale context-dependent massively parallel reporter assay (MPRA) in human neurons designed to catalogue genotype x environment (GxE) interactions. Across 240 genome-wide association study (GWAS) loci linked to ten brain traits/disorders, the impact of hydrocortisone, interleukin 6, and interferon alpha on transcriptional activity is empirically evaluated in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons. Of ~3,500 candidate regulatory risk elements (CREs), 11% of variants are active at baseline, whereas cue-specific CRE regulatory activity range from a high of 23% (hydrocortisone) to a low of 6% (IL-6). Cue-specific regulatory activity is driven, at least in part, by differences in transcription factor binding activity, the gene targets of which show unique enrichments for brain disorders as well as co-morbid metabolic and immune syndromes. The dynamic nature of genetic regulation informs the influence of environmental factors, reveals a mechanism underlying pleiotropy and variable penetrance, and identifies specific risk variants that confer greater disorder susceptibility after exposure to stress or inflammation. Understanding neurodevelopmental GxE interactions will inform mental health trajectories and uncover novel targets for therapeutic intervention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA