RESUMEN
The cytokine TWEAK and its cognate receptor Fn14 are members of the TNF/TNFR superfamily and are upregulated in tumors. We found that Fn14, when expressed in tumors, causes cachexia and that antibodies against Fn14 dramatically extended lifespan by inhibiting tumor-induced weight loss although having only moderate inhibitory effects on tumor growth. Anti-Fn14 antibodies prevented tumor-induced inflammation and loss of fat and muscle mass. Fn14 signaling in the tumor, rather than host, is responsible for inducing this cachexia because tumors in Fn14- and TWEAK-deficient hosts developed cachexia that was comparable to that of wild-type mice. These results extend the role of Fn14 in wound repair and muscle development to involvement in the etiology of cachexia and indicate that Fn14 antibodies may be a promising approach to treat cachexia, thereby extending lifespan and improving quality of life for cancer patients.
Asunto(s)
Caquexia/tratamiento farmacológico , Neoplasias/patología , Receptores del Factor de Necrosis Tumoral/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/administración & dosificación , Atrofia/tratamiento farmacológico , Caquexia/patología , Muerte Celular , Neoplasias del Colon/tratamiento farmacológico , Citocina TWEAK , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Desarrollo de Músculos , Neoplasias/metabolismo , Receptores del Factor de Necrosis Tumoral/química , Receptores del Factor de Necrosis Tumoral/metabolismo , Alineación de Secuencia , Transducción de Señal , Receptor de TWEAK , Factores de Necrosis Tumoral/metabolismoRESUMEN
A highly effective 2-step system for site-specific antibody modification and conjugation of the monoclonal antibody Herceptin (commercially available under Trastuzumab) in a cysteine-independent manner was used to generate labelled antibodies for in vivo imaging. The first step contains redox-activated chemical tagging (ReACT) of thioethers via engineered methionine residues to introduce specific alkyne moieties, thereby offering a novel easy way to fundamentally change the process of antibody bioconjugation. The second step involves modification of the introduced alkyne via azide-alkyne cycloaddition 'click' conjugation. The versatility of this 2-step approach is demonstrated here by the selective incorporation of a fluorescent dye but can also be applied to a wide variety of different conjugation partners depending on the desired application in a facile manner. Methionine-modified antibodies were characterised in vitro, and the diagnostic potential of the most promising variant was further analysed in an in vivo xenograft animal model using a fluorescence imaging modality. This study demonstrates how methionine-mediated antibody conjugation offers an orthogonal and versatile route to the generation of tailored antibody conjugates with in vivo applicability.
Asunto(s)
Metionina , Neoplasias , Animales , Humanos , Trastuzumab , Anticuerpos Monoclonales/química , Racemetionina , Alquinos/química , Azidas/químicaRESUMEN
CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.
Asunto(s)
Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Animales , Especificidad de Anticuerpos/inmunología , Sitios de Unión/inmunología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/inmunología , Células Cultivadas , Cristalografía por Rayos X , Mapeo Epitopo , Células HEK293 , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Células HL-60 , Humanos , Células Jurkat , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Modelos Moleculares , Unión Proteica/inmunología , Dominios Proteicos , Receptores CXCR4/metabolismo , Anticuerpos de Dominio Único/química , Resonancia por Plasmón de SuperficieRESUMEN
Plasmodium vivax invasion of human erythrocytes requires interaction of the P. vivax Duffy binding protein (PvDBP) with its host receptor, the Duffy antigen (Fy) on the erythrocyte surface. Consequently, PvDBP is a leading vaccine candidate. The binding domain of PvDBP lies in a cysteine-rich portion of the molecule called region II (PvDBPII). PvDBPII contains three distinct subdomains based upon intramolecular disulfide bonding patterns. Subdomain 2 (SD2) is highly polymorphic and is thought to contain many key residues for binding to Fy, while SD1 and SD3 are comparatively conserved and their role in Fy binding is not well understood. To examine the relative contributions of the different subdomains to binding to Fy and their abilities to elicit strain-transcending binding-inhibitory antibodies, we evaluated recombinant proteins from SD1+2, SD2, SD3, and SD3+, which includes 24 residues of SD2. All of the recombinant subdomains, except for SD2, bound variably to human erythrocytes, with constructs containing SD3 showing the best binding. Antisera raised in laboratory animals against SD3, SD3+, and SD2+3 inhibited the binding of full-length PvDBPII, which is strain transcending, whereas antisera generated to SD1+2 and SD2 failed to generate blocking antibodies. All of the murine monoclonal antibodies generated to full-length PvDBPII that had significant binding-inhibitory activity recognized only SD3. Thus, SD3 binds Fy and elicits blocking antibodies, indicating that it contains residues critical to Fy binding that could be the basis of a strain-transcending candidate vaccine against P. vivax.
Asunto(s)
Antígenos de Protozoos/metabolismo , Sistema del Grupo Sanguíneo Duffy/metabolismo , Eritrocitos/metabolismo , Plasmodium vivax/metabolismo , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Sitios de Unión , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Plasmodium vivax/inmunología , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Protozoarias/inmunología , Ratas , Receptores de Superficie Celular/inmunologíaRESUMEN
The Plasmodium vivax Duffy binding protein region II (DBPII) is a vital ligand for the parasite's invasion of reticulocytes, thereby making this molecule an attractive vaccine candidate against vivax malaria. However, strain-specific immunity due to DBPII allelic variation in Bc epitopes may complicate vaccine efficacy, suggesting that an effective DBPII vaccine needs to target conserved epitopes that are potential targets of strain-transcending neutralizing immunity. The minimal epitopes reactive with functionally inhibitory anti-DBPII monoclonal antibody (MAb) 3C9 and noninhibitory anti-DBPII MAb 3D10 were mapped using phage display expression libraries, since previous attempts to deduce the 3C9 epitope by cocrystallographic methods failed. Inhibitory MAb 3C9 binds to a conserved conformation-dependent epitope in subdomain 3, while noninhibitory MAb 3D10 binds to a linear epitope in subdomain 1 of DBPII, consistent with previous studies. Immunogenicity studies using synthetic linear peptides of the minimal epitopes determined that the 3C9 epitope, but not the 3D10 epitope, could induce functionally inhibitory anti-DBPII antibodies. Therefore, the highly conserved binding-inhibitory 3C9 epitope offers the potential as a component in a broadly inhibitory, strain-transcending DBP subunit vaccine.IMPORTANCE Vivax malaria is the second leading cause of malaria worldwide and the major cause of non-African malaria. Unfortunately, efforts to develop antimalarial vaccines specifically targeting Plasmodium vivax have been largely neglected, and few candidates have progressed into clinical trials. The Duffy binding protein is considered a leading blood-stage vaccine candidate because this ligand's recognition of the Duffy blood group reticulocyte surface receptor is considered essential for infection. This study identifies a new target epitope on the ligand's surface that may serve as the target of vaccine-induced binding-inhibitory antibody (BIAb). Understanding the potential targets of vaccine protection will be important for development of an effective vaccine.
Asunto(s)
Antígenos de Protozoos/inmunología , Epítopos/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Receptores de Superficie Celular/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Ensayo de Inmunoadsorción Enzimática , Epítopos/genética , Ligandos , Vacunas contra la Malaria , Malaria Vivax/inmunología , Malaria Vivax/prevención & control , Ratones , Ratones Endogámicos BALB C , Biblioteca de Péptidos , Plasmodium vivax/química , Proteínas Protozoarias/genética , Receptores de Superficie Celular/genéticaRESUMEN
Fusion proteins based on the crystalline bacterial cell surface layer (S-layer) proteins SbpA from Bacillus sphaericus CCM 2177 and SbsB from Geobacillus stearothermophilus PV72/p2 and a peptide mimotope F1 that mimics an immunodominant epitope of Epstein-Barr virus (EBV) were designed and overexpressed in Escherichia coli. Constructs were designed such that the peptide mimotope was presented either at the C-terminus (SbpA/F1) or at the N-terminus (SbsB/F1) of the respective S-layer proteins. The resulting S-layer fusion proteins, SbpA/F1 and SbsB/F1, fully retained the intrinsic self-assembly capability of the S-layer moiety into monomolecular lattices. As determined by immunodot assays and ELISAs using monoclonal antibodies, the F1 mimotope was well-presented on the outer surface of the S-layer lattices and accessible for antibody binding. Further comparison of the two S-layer fusion proteins showed that the S-layer fusion protein SbpA/F1 had a higher antibody binding capacity than SbsB/F1 in aqueous solution and in immune sera, illustrating the importance of epitope orientation on the performance of solid-phase immunoassays. To assess the diagnostic values of S-layer mimotope fusion protein SbpA/F1, we screened a panel of 83 individual EBV IgM-positive, EBV negative, and potential cross-reactive sera for their reactivities. This resulted in 98.2% specificity and 89.3% sensitivity, and furthermore no cross-reactivity with related viral disease states including rheumatoid factor was observed. This study shows the potential of S-layer fusion proteins as a matrix for site-directed immobilization of small ligands in solid-phase immunoassays using EBV diagnostics as a model system.
Asunto(s)
Bacillus/metabolismo , Materiales Biomiméticos , Ensayo de Inmunoadsorción Enzimática/métodos , Infecciones por Virus de Epstein-Barr/diagnóstico , Epítopos Inmunodominantes , Glicoproteínas de Membrana/metabolismo , Péptidos , Secuencia de Aminoácidos , Bacillus/genética , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Reacciones Cruzadas , Infecciones por Virus de Epstein-Barr/inmunología , Expresión Génica , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/inmunología , Epítopos Inmunodominantes/metabolismo , Glicoproteínas de Membrana/genética , Datos de Secuencia Molecular , Péptidos/química , Péptidos/inmunología , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Sensibilidad y EspecificidadRESUMEN
Large repertoires of peptides displayed on bacteriophage have been extensively used to select for ligand-binding molecules. This is a relatively straightforward process involving several cycles of selection against target molecules, and the resulting ligands can be tailored to various applications. In this chapter we describe detailed methods to select peptide ligands for affinity chromatography, with particular focus on selection of peptides that mimic antigen epitopes. The selection process involves screening a phage peptide library against a monoclonal antibody, proving the peptide is an authentic epitope mimic and coupling the peptide mimotope to an affinity resin for purifying antibodies from human serum. There are several other applications of phage peptides that could be used for affinity chromatography; the approaches are outlined, but detailed methods have not been included.
Asunto(s)
Bacteriófagos/genética , Cromatografía de Afinidad/métodos , Péptidos/química , Secuencia de Bases , Cartilla de ADN , Ensayo de Inmunoadsorción Enzimática , Ligandos , Péptidos/genéticaRESUMEN
The new antigen receptor (IgNAR) is an antibody unique to sharks and consists of a disulphide-bonded dimer of two protein chains, each containing a single variable and five constant domains. The individual variable (V(NAR)) domains bind antigen independently, and are candidates for the smallest antibody-based immune recognition units. We have previously produced a library of V(NAR) domains with extensive variability in the CDR1 and CDR3 loops displayed on the surface of bacteriophage. Now, to test the efficacy of this library, and further explore the dynamics of V(NAR) antigen binding we have performed selection experiments against an infectious disease target, the malarial Apical Membrane Antigen-1 (AMA1) from Plasmodium falciparum. Two related V(NAR) clones were selected, characterized by long (16- and 18-residue) CDR3 loops. These recombinant V(NAR)s could be harvested at yields approaching 5mg/L of monomeric protein from the E. coli periplasm, and bound AMA1 with nanomolar affinities (K(D)= approximately 2 x 10(-7) M). One clone, designated 12Y-2, was affinity-matured by error prone PCR, resulting in several variants with mutations mapping to the CDR1 and CDR3 loops. The best of these variants showed approximately 10-fold enhanced affinity over 12Y-2 and was Plasmodium falciparum strain-specific. Importantly, we demonstrated that this monovalent V(NAR) co-localized with rabbit anti-AMA1 antisera on the surface of malarial parasites and thus may have utility in diagnostic applications.
Asunto(s)
Anticuerpos Antiprotozoarios/química , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/inmunología , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/genética , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Secuencia de Bases , Región Variable de Inmunoglobulina/genética , Modelos Moleculares , Datos de Secuencia Molecular , Biblioteca de Péptidos , Estructura Terciaria de Proteína , TiburonesRESUMEN
This meeting covered recent advances in the molecular display of peptides, proteins and nucleotides, including selection and mutational technologies. The scientific organisers assembled an impressive array of 'molecular display' heavyweights. It promised to be a stimulating meeting and the events of the following 2 days did not disappoint. The majority of the presentations were concerned with the development of novel display technologies and processes. Antibodies currently represent > 30% of the biopharmaceutical market, but are likely to be superseded by more efficient display frameworks which avoid their inherent drawbacks. In order to generate such novel therapeutics and diagnostics, high affinity reagents must be selected and/or generated from hitherto unexplored nucleic acid sequences and displayed on suitable frameworks. This meeting was concerned with the identification, generation and validation of novel sequences and framework molecules. The keynote addresses were followed by four themed sessions entitled New technologies and target selection, The discovery of small molecules using phage display, Applications in proteomics, and Novel therapeutics and diagnostics. There was a panel discussion after each session.
Asunto(s)
Biología Molecular/tendencias , Biblioteca de Péptidos , Diseño de Fármacos , Terapia Genética , Humanos , Farmacología , ProteómicaRESUMEN
The 4th Annual Recombinant Antibodies Conference was immediately following the 5th Annual 'Molecular Display: The Chemistry Set for Proteins and Small Molecules' conference, both held in Cambridge, MA and organised by Cambridge Healthtech Institute. The former conference focused on development of new approaches for recombinant antibody development, with particular emphasis on improved methods for selection and optimisation allowing rapid validation and development of human antibodies for the clinic. There were many impressive presentations describing emerging technologies such as new antibody-like scaffolds, covalent P2 antibody display, de-immunisation of antibodies and measuring affinities of as many as 400 clones simultaneously using proteomic microarray platforms. The conference also highlighted the latest applications of library technologies for proteomics and target discovery, and the generation of therapeutic molecules as antibodies alone or as drug, toxin or radionuclide conjugates.
Asunto(s)
Anticuerpos/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Anticuerpos/química , Diseño de Fármacos , Humanos , Proteómica , Proteínas Recombinantes/químicaRESUMEN
Apical membrane antigen 1 (AMA1) of the malaria parasite Plasmodium falciparum has been implicated in the invasion of host erythrocytes and is an important vaccine candidate. We have previously described a 20-residue peptide, R1, that binds to AMA1 and subsequently blocks parasite invasion. Because this peptide appears to target a site critical for AMA1 function, it represents an important lead compound for anti-malarial drug development. However, the effectiveness of this peptide inhibitor was limited to a subset of parasite isolates, indicating a requirement for broader strain specificity. Furthermore, a barrier to the utility of any peptide as a potential therapeutic is its susceptibility to rapid proteolytic degradation. In this study, we sought to improve the proteolytic stability and AMA1 binding properties of the R1 peptide by systematic methylation of backbone amides (N-methylation). The inclusion of a single N-methyl group in the R1 peptide backbone dramatically increased AMA1 affinity, bioactivity, and proteolytic stability without introducing global structural alterations. In addition, N-methylation of multiple R1 residues further improved these properties. Therefore, we have shown that modifications to a biologically active peptide can dramatically enhance activity. This approach could be applied to many lead peptides or peptide therapeutics to simultaneously optimize a number of parameters.
Asunto(s)
Antimaláricos/farmacología , Péptidos/farmacología , Plasmodium falciparum/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antimaláricos/química , Metilación , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Especificidad por Sustrato , Resonancia por Plasmón de Superficie , Factores de TiempoRESUMEN
Apical membrane antigen 1 (AMA1) of the malaria parasite Plasmodium falciparum is an integral membrane protein that plays a key role in merozoite invasion of host erythrocytes. A monoclonal antibody, 4G2dc1, recognizes correctly folded AMA1 and blocks merozoite invasion. Phage display was used to identify peptides that bind to 4G2dc1 and mimic an important epitope of AMA1. Three of the highest-affinity binders--J1, J3, and J7--were chosen for antigenicity and immunogenicity studies. J1 and J7 were found to be true antigen mimics since both peptides generated inhibitory antibodies in rabbits (J. L. Casey et al., Infect. Immun. 72:1126-1134, 2004). In the present study, the solution structures of all three mimotopes were investigated by nuclear magnetic resonance spectroscopy. J1 adopted a well-defined region of structure, which can be attributed in part to the interactions of Trp11 with surrounding residues. In contrast, J3 and J7 did not adopt an ordered conformation over the majority of residues, although they share a region of local structure across their consensus sequence. Since J1 was the most structured of the peptides, it provided a template for the design of a constrained analogue, J1cc, which shares a structure similar to that of J1 and has a disulfide-stabilized conformation around the Trp11 region. J1cc binds with greater affinity to 4G2dc1 than does J1. These peptide structures provide the foundation for a better understanding of the complex conformational nature of inhibitory epitopes on AMA1. With its greater conformational stability and higher affinity for AMA1, J1cc may be a better in vitro correlate of immunity than the peptides identified by phage display.
Asunto(s)
Antígenos de Protozoos/química , Proteínas de la Membrana/química , Imitación Molecular , Péptidos/química , Plasmodium falciparum/química , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Afinidad de Anticuerpos , Antígenos de Protozoos/inmunología , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Epítopos/inmunología , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/inmunología , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , ConejosRESUMEN
Epstein-Barr virus (EBV) is a ubiquitous, worldwide infectious agent that causes infectious mononucleosis, affecting >90% of the world's population. Currently, enzyme-linked immunosorbent assay, mostly with purified preparations of EBV cell extracts to capture immunoglobulin M (IgM) antibodies in patients' serum, is used for primary diagnosis. Our objective was to determine whether a small set of peptides could contain sufficient immunogenic information to replace solid-phase antigens in EBV diagnostics. Using monoclonal antibodies, we selected four peptides that mimic different epitopes of EBV from a phage-displayed random peptide library. To assess their diagnostic value, we screened a panel of 62 individual EBV IgM sera for their reactivities with the peptides alone. For all peptides, there was a clear distinction between the EBV-positive and the EBV-negative samples, resulting in 100% specificity. The sensitivities were 88%, 85%, 71%, and 54% for peptides F1, A3, gp125, and A2, respectively. Any combination of peptides increased the sensitivity, indicating that individual peptides react with different subsets of antibodies. Furthermore, when the F1 and the gp125 peptides were coupled to bovine serum albumin and screened against 216 serum samples, there were dramatic improvements in sensitivities (95% and 92%, respectively) and little cross-reactivity with the other peptides encountered during acute viral infections, including rheumatoid factor. This study shows the potential for the use of peptide mimotopes as alternatives to the complex antigens used in current serodiagnostics for EBV infection.
Asunto(s)
Infecciones por Virus de Epstein-Barr/diagnóstico , Herpesvirus Humano 4/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales/sangre , Antígenos Virales/genética , Bovinos , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/estadística & datos numéricos , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/genética , Humanos , Epítopos Inmunodominantes/genética , Inmunoglobulina M/sangre , Ratones , Imitación Molecular , Datos de Secuencia Molecular , Biblioteca de Péptidos , Sensibilidad y Especificidad , Albúmina Sérica BovinaRESUMEN
Apical membrane antigen 1 (AMA1) is expressed in schizont-stage malaria parasites and sporozoites and is thought to be involved in the invasion of host red blood cells. AMA1 is an important vaccine candidate, as immunization with this antigen induces a protective immune response in rodent and monkey models of human malaria. Additionally, anti-AMA1 polyclonal and monoclonal antibodies inhibit parasite invasion in vitro. We have isolated a 20-residue peptide (R1) from a random peptide library that binds to native AMA1 as expressed by Plasmodium falciparum parasites. Binding of R1 peptide is dependent on AMA1 having the proper conformation, is strain specific, and results in the inhibition of merozoite invasion of host erythrocytes. The solution structure of R1, as determined by nuclear magnetic resonance spectroscopy, contains two structured regions, both involving turns, but the first region, encompassing residues 5 to 10, is hydrophobic and the second, at residues 13 to 17, is more polar. Several lines of evidence reveal that R1 targets a "hot spot" on the AMA1 surface that is also recognized by other peptides and monoclonal antibodies that have previously been shown to inhibit merozoite invasion. The functional consequence of binding to this region by a variety of molecules is the inhibition of merozoite invasion into host erythrocytes. The interaction between these peptides and AMA1 may further our understanding of the molecular mechanisms of invasion by identifying critical functional regions of AMA1 and aid in the development of novel antimalarial strategies.
Asunto(s)
Antimaláricos/farmacología , Proteínas Portadoras/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos , Antimaláricos/química , Bioensayo , Proteínas Portadoras/química , Datos de Secuencia Molecular , Biblioteca de Péptidos , Conformación ProteicaRESUMEN
Apical membrane antigen 1 (AMA1) is expressed on the surfaces of Plasmodium falciparum merozoites and is thought to play an important role in the invasion of erythrocytes by malaria parasites. To select for peptides that mimic conformational B-cell epitopes on AMA1, we screened a phage display library of >10(8) individual peptides for peptides bound by a monoclonal anti-AMA1 antibody, 4G2dc1, known to inhibit P. falciparum invasion of erythrocytes. The most reactive peptides, J1, J3, and J7, elicited antibody responses in rabbits that recognized the peptide immunogen and both recombinant and parasite AMA1. Human antibodies in plasma samples from individuals exposed to chronic malaria reacted with J1 and J7 peptides and were isolated using immobilized peptide immunoadsorbents. Both rabbit and human antibodies specific for J1 and J7 peptides were able to inhibit the invasion of erythrocytes by P. falciparum merozoites. This is the first example of phage-derived peptides that mimic an important epitope of a blood-stage malaria vaccine candidate, inducing and isolating functional protective antibodies. Our data support the use of J1 and J7 peptide mimics as in vitro correlates of protective immunity in future AMA1 vaccine trials.