Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400456

RESUMEN

Distributed optical fibre sensing (DOFS)-based strain measurement systems are now routinely deployed across infrastructure health monitoring applications. However, there are still practical performance and measurement issues associated with the fibre's attachment method, particularly with thermoplastic pipeline materials (e.g., high-density polyethylene, HDPE) and adhesive affixment methods. In this paper, we introduce a new optical fibre installation method that utilises a hot-weld encapsulation approach that fully embeds the fibre onto the pipeline's plastic surface. We describe the development, application and benefits of the new embedment approach (as compared to adhesive methods) and illustrate its practical performance via a full-scale, real-world, dynamic loading trial undertaken on a 1.8 m diameter, 6.4 m long stormwater pipeline structure constructed from composite spiral-wound, steel-reinforced, HDPE pipe. The optical frequency domain reflectometry (OFDR)-based strain results show how the new method improves strain transference and dynamic measurement performance and how the data can be easily interpreted, in a practical context, without the need for complex strain transfer functions. Through the different performance tests, based on UK rail-road network transport loading conditions, we also show how centimetre- to metre-scale strain variations can be clearly resolved at the frequencies and levels consistent with transport- and construction-based, buried infrastructure loading scenarios.

2.
Biotechnol Bioeng ; 116(12): 3421-3432, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31429922

RESUMEN

The capability of electrical stimulation (ES) in promoting bone regeneration has already been addressed in clinical studies. However, its mechanism is still being investigated and discussed. This study aims to investigate the responses of macrophages (J774A.1) and preosteoblasts (MC3T3-E1) to ES and the faradic by-products from ES. It is found that pH of the culture media was not significantly changed, whereas the average hydrogen peroxide concentration was increased by 3.6 and 5.4 µM after 1 and 2 hr of ES, respectively. The upregulation of Bmp2 and Spp1 messenger RNAs was observed after 3 days of stimulation, which is consistent among two cell types. It is also found that Spp1 expression of macrophages was partially enhanced by faradic by-products. Osteogenic differentiation of preosteoblasts was not observed during the early stage of ES as the level of Runx2 expression remains unchanged. However, cell proliferation was impaired by the excessive current density from the electrodes, and also faradic by-products in the case of macrophages. This study shows that macrophages could respond to ES and potentially contribute to the bone formation alongside preosteoblasts. The upregulation of Bmp2 and Spp1 expressions induced by ES could be one of the mechanisms behind the electrically stimulated osteogenesis.


Asunto(s)
Proteína Morfogenética Ósea 2/biosíntesis , Regulación de la Expresión Génica , Macrófagos/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Osteopontina/biosíntesis , Animales , Línea Celular , Técnicas de Cocultivo , Estimulación Eléctrica , Macrófagos/citología , Ratones , Osteoblastos/citología
3.
Acta Biomater ; 139: 204-217, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34390847

RESUMEN

Electrical stimulation of cells allows exogenous electric signals as stimuli to manipulate cell growth, preferential orientation and bone remodelling. In this study, commercially pure titanium discs were utilised in combination with a custom-built bioreactor to investigate the cellular responses of human mesenchymal stem cells via in-vitro functional assays. Finite element analysis revealed the homogeneous delivery of electric field in the bioreactor chamber with no detection of current density fluctuation in the proposed model. The custom-built bioreactor with capacitive stimulation delivery system features long-term stimulation with homogeneous electric field, biocompatible, sterilisable, scalable design and cost-effective in the manufacturing process. Using a continuous stimulation regime of 100 and 200 mV/mm on cp Ti discs, viability tests revealed up to an approximately 5-fold increase of cell proliferation rate as compared to non-stimulated controls. The human mesenchymal stem cells showed more elongated and differentiated morphology under this regime, with evidence of nuclear elongation and cytoskeletal orientation perpendicular to the direction of electric field. The continuous stimulation did not cause pH fluctuations and hydrogen peroxide production caused by Faradic reactions, signifying the suitability for long-term toxic free stimulation as opposed to the commonly used direct stimulation regime. An approximate of 4-fold increase in alkaline phosphatase production and approximately 9-fold increase of calcium deposition were observed on 200 mV/mm exposed samples relative to non-stimulated controls. It is worth noting that early stem cell differentiation and matrix production were observed under the said electric field even without the presence of chemical inductive growth factors. STATEMENT OF SIGNIFICANCE: This manuscript presents a study on combining pure titanium (primarily preferred as medical implant materials) and electrical stimulation in a purpose-built bioreactor with capacitive stimulation delivery system. A continuous capacitive stimulation regime on titanium disc has resulted in enhanced stem cell orientation, nuclei elongation, proliferation and differentiation as compared to non-stimulated controls. We believe that this manuscript creates a paradigm for future studies on the evolution of healthcare treatments in the area of targeted therapy on implantable and wearable medical devices through tailored innovative electrical stimulation approach, thereby influencing therapeutic conductive and electroactive biomaterials research prospects and development.


Asunto(s)
Osteogénesis , Titanio , Diferenciación Celular , Estimulación Eléctrica/métodos , Humanos , Células Madre , Titanio/farmacología
4.
J Tissue Eng ; 12: 2041731420974147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643602

RESUMEN

Electrical stimulation (ES) has potential to be an effective tool for bone injury treatment in clinics. However, the therapeutic mechanism associated with ES is still being discussed. This study aims to investigate the initial mechanism of action by characterising the physical and chemical changes in the extracellular environment during ES and correlate them with the responses of mesenchymal stem/stromal cells (MSCs). Computational modelling was used to estimate the electrical potentials relative to the cathode and the current density across the cell monolayer. We showed expression of phosphorylated ERK1/2, c-FOS, c-JUN, and SPP1 mRNAs, as well as the increased metabolic activities of MSCs at different time points. Moreover, the average of 2.5 µM of H2O2 and 34 µg/L of dissolved Pt were measured from the electrically stimulated media (ES media), which also corresponded with the increases in SPP1 mRNA expression and cell metabolic activities. The addition of sodium pyruvate to the ES media as an antioxidant did not alter the SPP1 mRNA expression, but eliminated an increase in cell metabolic activities induced by ES media treatment. These findings suggest that H2O2 was influencing cell metabolic activity, whereas SPP1 mRNA expression was regulated by other faradic by-products. This study reveals how different electrical stimulation regime alters cellular regenerative responses and the roles of faradic by-products, that might be used as a physical tool to guide and control cell behaviour.

5.
Water Res ; 161: 222-231, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31200219

RESUMEN

Hyporheic zones are increasingly thought of as natural bioreactors, capable of transforming and attenuating groundwater pollutants present in diffuse baseflow. An underappreciated scenario in the understanding of contaminant fate in hyporheic zones is the interaction between point-source trichloroethene (TCE) plumes and ubiquitous, non-point source pollutants such as nitrate. This study aims to conceptualise critical biogeochemical gradients in the hyporheic zone which govern the export potential of these redox-sensitive pollutants from carbon-poor, oxic aquifers. Within the TCE plume discharge zone, discrete vertical profiling of the upper 100 cm of sediment pore water chemistry revealed an 80% increase in dissolved organic carbon (DOC) concentrations and 20-60 cm thick hypoxic zones (<2 mg O2 L-1) within which most reactive transport was observed. A 33% reduction of nitrate concentrations coincided with elevated pore water nitrous oxide concentrations as well as the appearance of manganese and the TCE metabolite cis-1,2-dichloroethene (cDCE). Elevated groundwater nitrate concentrations (>50 mg L-1) create a large stoichiometric demand for bioavailable DOC in discharging groundwater. With the benefit of a high-resolution grid of pore water samplers investigating the shallowest 30 cm of hypoxic groundwater flow paths, we identified DOC-rich hotspots associated with submerged vegetation (Ranunculus spp.), where low-energy metabolic processes such as mineral dissolution/reduction, methanogenesis and ammonification dominate. Using a chlorine index metric, we show that enhanced TCE to cDCE transformation takes place within these biogeochemical hotspots, highlighting their relevance for natural plume attenuation.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Etilenos , Nitratos
6.
Water Res ; 128: 362-382, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126033

RESUMEN

Chlorinated ethenes (CEs) are legacy contaminants whose chemical footprint is expected to persist in aquifers around the world for many decades to come. These organohalides have been reported in river systems with concerning prevalence and are thought to be significant chemical stressors in urban water ecosystems. The aquifer-river interface (known as the hyporheic zone) is a critical pathway for CE discharge to surface water bodies in groundwater baseflow. This pore water system may represent a natural bioreactor where anoxic and oxic biotransformation process act in synergy to reduce or even eliminate contaminant fluxes to surface water. Here, we critically review current process understanding of anaerobic CE respiration in the competitive framework of hyporheic zone biogeochemical cycling fuelled by in-situ fermentation of natural organic matter. We conceptualise anoxic-oxic interface development for metabolic and co-metabolic mineralisation by a range of aerobic bacteria with a focus on vinyl chloride degradation pathways. The superimposition of microbial metabolic processes occurring in sediment biofilms and bulk solute transport delivering reactants produces a scale dependence in contaminant transformation rates. Process interpretation is often confounded by the natural geological heterogeneity typical of most riverbed environments. We discuss insights from recent field experience of CE plumes discharging to surface water and present a range of practical monitoring technologies which address this inherent complexity at different spatial scales. Future research must address key dynamics which link supply of limiting reactants, residence times and microbial ecophysiology to better understand the natural attenuation capacity of hyporheic systems.


Asunto(s)
Agua Subterránea/microbiología , Ríos/microbiología , Cloruro de Vinilo/metabolismo , Anaerobiosis , Bacterias Aerobias , Biodegradación Ambiental , Dicloroetilenos/metabolismo , Ecosistema , Dicloruros de Etileno/metabolismo , Etilenos , Fermentación , Halogenación
7.
J Contam Hydrol ; 94(1-2): 49-75, 2007 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17601633

RESUMEN

Groundwater and sub-surface contamination by Light Non-Aqueous Phase Liquids (LNAPLs) is one of the industrial world's most pressing environmental issues and a thorough understanding of the hydrological, physical and bio-chemical properties of the sub-surface is key to determining the spatial and temporal development of any particular contamination event. Non-invasive geophysical techniques (such as electrical resistivity, electromagnetic conductivity, Ground-Penetrating Radar, etc.) have proved to be successful sub-surface investigation and characterisation tools with Ground-Penetrating Radar (GPR) being particularly popular. Recent studies have shown that the spatial/temporal variation in GPR signal attenuation can provide important information on the electrical properties of the sub-surface materials that, in turn, can be used to assess the physical and hydrological nature of the pore fluids and associated contaminants. Unfortunately, a high percentage of current LNAPL-related GPR studies focus on contaminant mapping only, with little emphasis being placed on characterising the hydrological properties (e.g., determining contaminant saturation index, etc.). By comparing laboratory-based, dielectric measurements of LNAPL contaminated materials with the GPR signal attenuation observed in both contaminated and 'clean' areas of an LNAPL contaminated site, new insights have been gained into the nature of contaminant distribution/saturation and the likely signal attenuation mechanisms. The results show that, despite some practical limitations of the analysis technique, meaningful hydrological interpretations can be obtained on the contaminant properties, saturation index and bio-degradation processes. A generalised attenuation/saturation model has been developed that describes the physical and attenuation enhancement characteristics of the contaminated areas and reveals that the most significant attenuation is related to smeared zone surrounding the seasonally changing water table interface. It is envisaged that the model will provide a basis for the interpretation of GPR data from analogous LNAPL contaminated sites and provide investigators with an appreciation of the merits and limitations of GPR-based, attenuation analysis techniques for hydrological applications.


Asunto(s)
Conductividad Eléctrica , Monitoreo del Ambiente/métodos , Residuos Industriales , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua/análisis , Monitoreo del Ambiente/instrumentación , Geografía , Compuestos Orgánicos/toxicidad , Medición de Riesgo , Contaminantes Químicos del Agua/toxicidad
8.
J Forensic Sci ; 61(2): 309-321, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27404604

RESUMEN

This ongoing monitoring study provides forensic search teams with systematic geophysical data over simulated clandestine graves for comparison to active cases. Simulated "wrapped," "naked," and "control" burials were created. Multiple geophysical surveys were collected over 6 years, here showing data from 4 to 6 years after burial. Electrical resistivity (twin electrode and ERI), multifrequency GPR, grave and background soil water were collected. Resistivity surveys revealed that the naked burial had low-resistivity anomalies up to year four but then difficult to image, whereas the wrapped burial had consistent large high-resistivity anomalies. GPR 110- to 900-MHz frequency surveys showed that the wrapped burial could be detected throughout, but the naked burial was either not detectable or poorly resolved. 225-MHz frequency GPR data were optimal. Soil water analyses showed decreasing (years 4 to 5) to background (year 6) conductivity values. Results suggest both resistivity and GPR surveying if burial style unknown, with winter to spring surveys optimal and increasingly important as time increases.

9.
J Forensic Sci ; 60(4): 1052-60, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26190264

RESUMEN

In homicide investigations, it is critically important that postmortem interval and postburial interval (PBI) of buried victims are determined accurately. However, clandestine graves can be difficult to locate; and the detection rates for a variety of search methods (ranging from simple ground probing through to remote imaging and near-surface geophysics) can be very low. In this study, simulated graves of homicide victims were emplaced in three sites with contrasting soil types, bedrock, and depositional environments. The long-term monthly in situ monitoring of grave soil water revealed rapid increases in conductivity up to 2 years after burial, with the longest study evidencing declining values to background levels after 4.25 years. Results were corrected for site temperatures and rainfall to produce generic models of fluid conductivity as a function of time. The research suggests soilwater conductivity can give reliable PBI estimates for clandestine burials and therefore be used as a grave detection method.

10.
Forensic Sci Int ; 246: 31-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25460105

RESUMEN

There are various techniques available for forensic search teams to employ to successfully detect a buried object. Near-surface geophysical search methods have been dominated by ground penetrating radar but recently other techniques, such as electrical resistivity, have become more common. This paper discusses magnetic susceptibility as a simple surface search tool illustrated by various research studies. These suggest magnetic susceptibility to be a relatively low cost, quick and effective tool, compared to other geophysical methods, to determine disturbed ground above buried objects and burnt surface remains in a variety of soil types. Further research should collect datasets over objects of known burial ages for comparison purposes and used in forensic search cases to validate the technique.

11.
Acta Biomater ; 10(6): 2341-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24556448

RESUMEN

Developing stimulus-responsive biomaterials with easy-to-tailor properties is a highly desired goal of the tissue engineering community. A novel type of electroactive biomaterial, the conductive polymer, promises to become one such material. Conductive polymers are already used in fuel cells, computer displays and microsurgical tools, and are now finding applications in the field of biomaterials. These versatile polymers can be synthesised alone, as hydrogels, combined into composites or electrospun into microfibres. They can be created to be biocompatible and biodegradable. Their physical properties can easily be optimized for a specific application through binding biologically important molecules into the polymer using one of the many available methods for their functionalization. Their conductive nature allows cells or tissue cultured upon them to be stimulated, the polymers' own physical properties to be influenced post-synthesis and the drugs bound in them released, through the application of an electrical signal. It is thus little wonder that these polymers are becoming very important materials for biosensors, neural implants, drug delivery devices and tissue engineering scaffolds. Focusing mainly on polypyrrole, polyaniline and poly(3,4-ethylenedioxythiophene), we review conductive polymers from the perspective of tissue engineering. The basic properties of conductive polymers, their chemical and electrochemical synthesis, the phenomena underlying their conductivity and the ways to tailor their properties (functionalization, composites, etc.) are discussed.


Asunto(s)
Materiales Biocompatibles , Polímeros , Ingeniería de Tejidos
12.
J Contam Hydrol ; 158: 38-54, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24424265

RESUMEN

Integrated approaches for the identification of pollutant linkages between aquifers and streams are of crucial importance for evaluating the environmental risks posed by industrial contaminants like trichloroethene (TCE). This study presents a systematic, multi-scale approach to characterising groundwater TCE discharge to a 'gaining' UK lowland stream receiving baseflow from a major Permo-Triassic sandstone aquifer. Beginning with a limited number of initial monitoring points, we aim to provide a 'first pass' mechanistic understanding of the plume's fate at the aquifer/stream interface using a novel combination of streambed diffusion samplers, riparian monitoring wells and drive-point mini-piezometers in a spatially nested sampling configuration. Our results indicate the potential discharge zone of the plume to extend along a stream reach of 120 m in length, delineated by a network of 60 in-situ diffusion samplers. Within this section, a 40 m long sub-reach of higher concentration (>10 µg L(-1)) was identified; centred on a meander bend in the floodplain. 25 multi-level mini-piezometers installed to target this down-scaled reach revealed even higher TCE concentrations (20-40 µg L(-1)), significantly above alluvial groundwater samples (<6 µg L(-1)) from 15 riparian monitoring wells. Significant lateral and vertical spatial heterogeneity in TCE concentrations within the top 1m of the streambed was observed with the decimetre-scale vertical resolution provided by multi-level mini-piezometers. It appears that the distribution of fine-grained material in the Holocene deposits of the riparian floodplain and below the channel is exerting significant local-scale geological controls on the location and magnitude of the TCE discharge. Large-scale in-situ biodegradation of the plume was not evident during the monitoring campaigns. However, detections of cis-1,2-dichloroethene and vinyl chloride in discrete sections of the sediment profile indicate that shallow (e.g., <20 cm) TCE transformation may be significant at a local scale in the streambed deposits. Our findings highlight the need for efficient multi-scale monitoring strategies in geologically heterogeneous lowland stream/aquifer systems in order to more adequately quantify the risk to surface water ecological receptors posed by point-source groundwater contaminants like TCE.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea/química , Tricloroetileno/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Ríos/química , Reino Unido
13.
Tissue Eng Part B Rev ; 19(1): 48-57, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22873689

RESUMEN

New advances in tissue engineering are being made through the application of different types of electrical stimuli to influence cell proliferation and differentiation. Developments made in the last decade have allowed us to improve the structure and functionality of tissue-engineered products through the use of growth factors, hormones, drugs, physical stimuli, bioreactor use, and two-dimensional (2-D) and three-dimensional (3-D) artificial extracellular matrices (with various material properties and topography). Another potential type of stimulus is electricity, which is important in the physiology and development of the majority of all human tissues. Despite its great potential, its role in tissue regeneration and its ability to influence cell migration, orientation, proliferation, and differentiation has rarely been considered in tissue engineering. This review highlights the importance of endogenous electrical stimulation, gathering the current knowledge on its natural occurrence and role in vivo, discussing the novel methods of delivering this stimulus and examining its cellular and tissue level effects, while evaluating how the technique could benefit the tissue engineering discipline in the future.


Asunto(s)
Fenómenos Fisiológicos Celulares , Estimulación Eléctrica/métodos , Ingeniería de Tejidos/métodos , Animales , Humanos
14.
J Forensic Sci ; 57(6): 1467-86, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22509973

RESUMEN

This study provides forensic search teams with systematic geophysical monitoring data over simulated clandestine graves for comparison to active cases. Simulated "wrapped" and "naked" burials were created. Multigeophysical surveys were collected over a 3-year monitoring period. Bulk ground resistivity, electrical resistivity imaging, multifrequency ground-penetrating radar (GPR), and grave and background "soil-water" conductivity data were collected. Resistivity surveys revealed the naked burial had consistently low-resistivity anomalies, whereas the wrapped burial had small, varying high-resistivity anomalies. GPR 110- to 900-MHz frequency surveys showed the wrapped burial could be detected throughout, with the "naked" burial mostly resolved. Two hundred and twenty-five megahertz frequency GPR data were optimal. "Soil-water" analyses showed rapidly increasing (year 1), slowly increasing (year 2), and decreasing (year 3) conductivity values. Results suggest resistivity and GPR surveys should be collected if target "wrapping" is unknown, with winter to spring surveys optimal. Resistivity surveys should be collected in clay-rich soils.


Asunto(s)
Entierro , Radar , Animales , Conductividad Eléctrica , Impedancia Eléctrica , Ciencias Forenses , Fenómenos Geológicos , Humanos , Modelos Animales , Programas Informáticos , Suelo , Porcinos , Agua
15.
J Forensic Sci ; 53(6): 1405-16, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18808369

RESUMEN

A simulated clandestine shallow grave was created within a heterogeneous, made-ground, urban environment where a clothed, plastic resin, human skeleton, animal products, and physiological saline were placed in anatomically correct positions and re-covered to ground level. A series of repeat (time-lapse), near-surface geophysical surveys were undertaken: (1) prior to burial (to act as control), (2) 1 month, and (3) 3 months post-burial. A range of different geophysical techniques was employed including: bulk ground resistivity and conductivity, fluxgate gradiometry and high-frequency ground penetrating radar (GPR), soil magnetic susceptibility, electrical resistivity tomography (ERT), and self potential (SP). Bulk ground resistivity and SP proved optimal for initial grave location whilst ERT profiles and GPR horizontal "time-slices" showed the best spatial resolutions. Research suggests that in complex urban made-ground environments, initial resistivity surveys be collected before GPR and ERT follow-up surveys are collected over the identified geophysical anomalies.


Asunto(s)
Entierro , Monitoreo del Ambiente/instrumentación , Fenómenos Geológicos , Animales , Antropología Forense , Medicina Legal , Programas Informáticos , Porcinos , Factores de Tiempo , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA