Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431971

RESUMEN

In a previous paper, we demonstrated the synergistic action of the anti-ischemic lubeluzole (Lube S) on the cytotoxic activity of doxorubicin (Dox) and paclitaxel in human ovarian cancer A2780 and lung cancer A549 cells. In the present paper, we extended in vitro the study to the multi-drug-resistant A2780/DX3 cell line to verify the hypothesis that the Dox and Lube S drug association may potentiate the antitumor activity of this anticancer compound also in the context of drug resistance. We also evaluated some possible mechanisms underlying this activity. We analyzed the antiproliferative activity in different cancer cell lines. Furthermore, apoptosis, Dox accumulation, MDR1 downregulation, ROS, and NO production in A2780/DX3 cells were also evaluated. Our results confirm that Lube S improves Dox antiproliferative and apoptotic activities through different mechanisms of action, all of which may contribute to the final antitumor effect. Moderate stereoselectivity was found, with Lube S significantly more effective than its enantiomer (Lube R) and the corresponding racemate (Lube S/R). Docking simulation studies on the ABCB1 Cryo-EM structure supported the hypothesis that Lube S forms a stable MDR1-Dox-Lube S complex, which hampers the protein transmembrane domain flipping and blocks the efflux of Dox from resistant A2780/DX3 cells. In conclusion, our in vitro studies reinforce our previous hypothesis for repositioning the anti-ischemic Lube S as a potentiating agent in anticancer chemotherapy.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Piperidinas/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico
2.
Int J Obes (Lond) ; 43(1): 189-201, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30082752

RESUMEN

BACKGROUND: Lipocalin-2 (LCN2) is widely expressed in the organism with pleiotropic roles. In particular, its overexpression correlates with tissue stress conditions including inflammation, metabolic disorders, chronic diseases and cancer. OBJECTIVES: To assess the effects of systemic LCN2 overexpression on adipose tissue and glucose metabolism. SUBJECTS: Eighteen-month-old transgenic mice with systemic LCN2 overexpression (LCN2-Tg) and age/sex-matched wild-type mice. METHODS: Metabolic cages; histology and real-time PCR analysis; glucose and insulin tolerance tests; ELISA; flow cytometry; microPET and serum analysis. RESULTS: LCN2-Tg mice were smaller compared to controls but they ate (P = 0.0156) and drank (P = 0.0057) more and displayed a higher amount of visceral adipose tissue. Furthermore, LCN2-Tg mice with body weight ≥20 g showed adipocytes with a higher cell area (P < 0.0001) and altered expression of genes involved in adipocyte differentiation and inflammation. In particular, mRNA levels of adipocyte-derived Pparg (P ≤ 0.0001), Srebf1 (P < 0.0001), Fabp4 (P = 0.056), Tnfa (P = 0.0391), Il6 (P = 0.0198), and Lep (P = 0.0003) were all increased. Furthermore, LCN2-Tg mice displayed a decreased amount of basal serum insulin (P = 0.0122) and a statistically significant impaired glucose tolerance and insulin sensitivity consistent with Slc2a2 mRNA (P ≤ 0.0001) downregulated expression. On the other hand, Insr mRNA (P ≤ 0.0001) was upregulated and correlated with microPET analysis that demonstrated a trend in reduced whole-body glucose consumption and MRGlu in the muscles and a significantly reduced MRGlu in brown adipose tissue (P = 0.0247). Nevertheless, an almost nine-fold acceleration of hexokinase activity was observed in the LCN2-Tg mice liver compared to controls (P = 0.0027). Moreover, AST and ALT were increased (P = 0.0421 and P = 0.0403, respectively), which indicated liver involvement also demonstrated by histological staining. CONCLUSIONS: We show that LCN2 profoundly impacts adipose tissue size and function and glucose metabolism, suggesting that LCN2 should be considered as a risk factor in ageing for metabolic disorders leading to obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Envejecimiento/metabolismo , Glucosa/metabolismo , Lipocalina 2/metabolismo , Tejido Adiposo/patología , Envejecimiento/fisiología , Animales , Antropometría , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Ratones , Ratones Transgénicos
3.
J Cell Physiol ; 232(11): 3077-3087, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28004388

RESUMEN

Lipocalin-2 (LCN2) is a member of the lipocalin family whose expression is modulated in several conditions, including cell differentiation, innate immunity, stress, and cancer. Although it is known that it is expressed in bone, its function in this tissue remains poorly studied. To this end, we took advantage of transgenic mice lines that expressed LCN2 driven by a bone specific type I collagen (LCN2-Tg). In the bone marrow (BM) of LCN2-Tg mice we observed an increased number of phenotypically long-term hematopoietic stem cells (LT-HSC) that also displayed a higher proliferation rate compared to wild-type controls (Wt). Furthermore, hematopoietic progenitor cells, obtained from LCN2-Tg BM showed an increased clonogenic capacity compared to those obtained from LCN2-Tg spleen, a higher concentration of serum erythropoietin and a higher number of mature erythrocytes in the peripheral blood of old LCN2-Tg animals compared to aged-matched wt. The findings of a combined increase in the BM of the LCN2-Tg mice of SDF-1, SCF, and TIMP-1 levels along with the reduction of both MMP-9 activity and cathepsin K concentration may explain the observed effects on the HSC compartment. This study shows that LCN2 overexpression in bones modifies the BM microenvironment via modulation of the expression of key secreted factors and cytokines, which in turn regulate the HSC niche behavior enhancing both HSC homing in young mice and erythrocytes production in older mice.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Lipocalina 2/metabolismo , Osteoblastos/metabolismo , Comunicación Paracrina , Cráneo/citología , Nicho de Células Madre , Células 3T3 , Factores de Edad , Animales , Biomarcadores/metabolismo , Linaje de la Célula , Proliferación Celular , Quimiotaxis , Colágeno Tipo I/genética , Medios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Eritrocitos/metabolismo , Genotipo , Lipocalina 2/genética , Ratones , Ratones Transgénicos , Péptido Hidrolasas/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Transducción de Señal
4.
Hum Mutat ; 37(1): 98-109, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26486801

RESUMEN

CMT1A patients commonly share PMP22 genetic overloading but they show phenotypic heterogeneity and variability in PMP22 mRNA and protein expression. Moreover, PMP22 mRNA levels do not correlate with clinical outcome measures in these patients, suggesting their uselessness as a disease biomarker. Thus, in-depth analysis of PMP22 transcription and translation might help to define its pathogenic role in CMT1A. We focused on the alternative splicing of PMP22 gene to verify whether mRNA processing is altered in CMT1A. We identified three new PMP22 transcripts enriched in human sural nerve biopsies. One of them was an untranslated variant, whereas the other two originated from a PMP22 undescribed exon and encoded for a new putative protein localized in the endoplasmic reticulum. As splicing events in the PMP22 gene are differently regulated in tissues and during development, we analyzed the levels of PMP22 transcripts and their splicing pattern in human and experimental CMT1A. We found an altered PMP22 splicing ratio in the CMT1A rat. In addition, we showed a remarkable derangement in rat QKI expression, which is a critical regulator of splicing during myelination. Overall, our data suggest that an alteration of mRNA processing could be a pathogenic mechanism in CMT1A.


Asunto(s)
Empalme Alternativo , Proteínas de la Mielina/genética , Animales , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Ratones Transgénicos , Proteínas de la Mielina/metabolismo , Nervios Periféricos/metabolismo , Unión Proteica , Proteínas/genética , Ratas
5.
Cytogenet Genome Res ; 144(1): 9-14, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25323042

RESUMEN

DNA aneuploid sublines in sporadic colorectal cancers (CRCs) are quite frequent (about 85%) and likely the consequence of chromosomal instability and DNA copy number aberrations (CNAs). In order to gain insight into the mechanisms of the diploid-aneuploid transition in CRCs, we compared the CNA status in both diploid and aneuploid sublines. We used fresh/frozen material from 17 aneuploid CRCs, which was separated into 17 DNA diploid and 17 aneuploid sublines using enrichment of the epithelial component by multiparameter flow cytometry and sorting. CNA status of both sublines was obtained by array comparative genomic hybridization. The DNA diploid sublines from the aneuploid CRCs showed already CNAs, in particular, gains at 20 p and 20 q. The same aberrations were detected at increased frequencies in the corresponding DNA aneuploid sublines. Moreover, the very frequent gains/losses of chromosomes 4, 7, 8, 13, 15, and 18 in the DNA aneuploid sublines were absent or rare in the DNA diploid sublines from the same sporadic aneuploid CRCs. The comparison of the DNA diploid and aneuploid sublines from aneuploid CRCs suggests that 20 p and 20 q gains may play a role in the diploid-aneuploid transition. The 20 q chromosomal arm appears of particular interest since it harbors several genes implicated in chromosomal instability.


Asunto(s)
Aneuploidia , Aberraciones Cromosómicas , Cromosomas Humanos Par 20/genética , Neoplasias Colorrectales/genética , Adulto , Anciano , Inestabilidad Cromosómica , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/genética , Diploidia , Femenino , Humanos , Masculino , Persona de Mediana Edad
7.
Arch Pharm (Weinheim) ; 347(6): 423-31, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24554280

RESUMEN

Some new N-[6-indazolyl]arylsulfonamides and N-[alkoxy-6-indazolyl]arylsulfonamides were prepared by the reduction of 2-alkyl-6-nitroindazoles with SnCl2 in different alcohols, followed by coupling the corresponding amine with arylsulfonyl chlorides in pyridine. The newly synthesized compounds were evaluated for their antiproliferative and apoptotic activities against two human tumor cell lines: A2780 (ovarian carcinoma) and A549 (lung adenocarcinoma). Preliminary in vitro pharmacological studies revealed that N-(2-allyl-2H-indazol-6-yl)-4-methoxybenzenesulfonamide 4 and N-[7-ethoxy-2-(4-methyl-benzyl)-2H-indazol-6-yl]-4-methyl-benzenesulfonamide 9 exhibited significant antiproliferative activity against the A2780 and A549 cell lines with IC50 values in the range from 4.21 to 18.6 µM, and also that they trigger apoptosis in a dose-dependent manner. Furthermore, both active compounds were able to cause an arrest of cells in the G2/M phase of the cell cycle, typical but not exclusive of tubulin interacting agents, although only infrequent interactions with the microtubule network were observed by immunofluorescence microscopy, while docking analysis showed a possible different behavior between the two active compounds.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Indazoles/síntesis química , Indazoles/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Microscopía Fluorescente , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
8.
Microsc Res Tech ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988205

RESUMEN

Three-dimensional (3D) spheroid models aim to bridge the gap between traditional two-dimensional (2D) cultures and the complex in vivo tissue environment. These models, created by self-clustering cells to mimic a 3D environment with surrounding extracellular framework, provide a valuable research tool. The NSC-34 cell line, generated by fusing mouse spinal cord motor neurons and neuroblastoma cells, is essential for studying neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), where abnormal protein accumulation, such as TAR-DNA-binding protein 43 (TDP-43), occurs in affected nerve cells. However, NSC-34 behavior in a 3D context remains underexplored, and this study represents the first attempt to create a 3D model to determine its suitability for studying pathology. We generated NSC-34 spheroids using a nonadhesive hydrogel-based template and characterized them for 6 days. Light microscopy revealed that NSC-34 cells in 3D maintained high viability, a distinct round shape, and forming stable membrane connections. Scanning electron microscopy identified multiple tunnel-like structures, while ultrastructural analysis highlighted nuclear bending and mitochondria alterations. Using inducible GFP-TDP-43-expressing NSC-34 spheroids, we explored whether 3D structure affected TDP-43 expression, localization, and aggregation. Spheroids displayed nuclear GFP-TDP-43 expression, albeit at a reduced level compared with 2D cultures and generated both TDP-35 fragments and TDP-43 aggregates. This study sheds light on the distinctive behavior of NSC-34 in 3D culture, suggesting caution in the use of the 3D model for ALS or TDP-43 pathologies. Yet, it underscores the spheroids' potential for investigating fundamental cellular mechanisms, cell adaptation in a 3D context, future bioreactor applications, and drug penetration studies. RESEARCH HIGHLIGHTS: 3D spheroid generation: NSC-34 spheroids, developed using a hydrogel-based template, showed high viability and distinct shapes for 6 days. Structural features: advanced microscopy identified tunnel-like structures and nuclear and mitochondrial changes in the spheroids. Protein dynamics: the study observed how 3D structures impact TDP-43 behavior, with altered expression but similar aggregation patterns to 2D cultures. Research implications: this study reveals the unique behavior of NSC-34 in 3D culture, suggests a careful approach to use this model for ALS or TDP-43 pathologies, and highlights its potential in cellular mechanism research and drug testing applications.

9.
Front Bioeng Biotechnol ; 12: 1368851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638322

RESUMEN

Breast cancer is a significant global health concern, with the overexpression of human epidermal growth factor receptor 2 (HER2/ERBB2) being a driver oncogene in 20%-30% of cases. Indeed, HER2/ERBB2 plays a crucial role in regulating cell growth, differentiation, and survival via a complex signaling network. Overexpression of HER2/ERBB2 is associated with more aggressive behavior and increased risk of brain metastases, which remains a significant clinical challenge for treatment. Recent research has highlighted the role of breast cancer secretomes in promoting tumor progression, including excessive proliferation, immune invasion, and resistance to anti-cancer therapy, and their potential as cancer biomarkers. In this study, we investigated the impact of ERBB2+ breast cancer SKBR-3 cell line compared with MCF10-A mammary non-tumorigenic cell conditioned medium on the electrophysiological activity and morphology of neural networks derived from neurons differentiated from human induced pluripotent stem cells. Our findings provide evidence of active modulation of neuronal-glial networks by SKBR-3 and MCF10-A conditioned medium. These results provide insights into the complex interactions between breast cancer cells and the surrounding microenvironment. Further research is necessary to identify the specific factors within breast cancer conditioned medium that mediate these effects and to develop targeted therapies that disrupt this interaction.

10.
Ann Rheum Dis ; 72(6): 1044-52, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23117241

RESUMEN

OBJECTIVES: Tumour necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is caused by TNFRSF1A mutations, known to induce intracellular retention of the TNFα receptor 1 (TNFR1) protein, defective TNFα-induced apoptosis, and production of reactive oxygen species. As downregulation of autophagy, the main cellular pathway involved in insoluble aggregate elimination, has been observed to increase the inflammatory response, we investigated whether it plays a role in TRAPS pathogenesis. METHODS: The possible link between TNFRSF1A mutations and inflammation in TRAPS was studied in HEK-293T cells, transfected with expression constructs for wild-type and mutant TNFR1 proteins, and in monocytes derived from patients with TRAPS, by investigating autophagy function, NF-κB activation and interleukin (IL)-1ß secretion. RESULTS: We found that autophagy is responsible for clearance of wild-type TNFR1, but when TNFR1 is mutated, the autophagy process is defective, probably accounting for mutant TNFR1 accumulation as well as TRAPS-associated induction of NF-κB activity and excessive IL-1ß secretion, leading to chronic inflammation. Autophagy inhibition due to TNFR1 mutant proteins can be reversed, as demonstrated by the effects of the antibiotic geldanamycin, which was found to rescue the membrane localisation of mutant TNFR1 proteins, reduce their accumulation and counteract the increased inflammation by decreasing IL-1ß secretion. CONCLUSIONS: Autophagy appears to be an important mechanism in the pathogenesis of TRAPS, an observation that provides a rationale for the most effective therapy in this autoinflammatory disorder. Our findings also suggest that autophagy could be proposed as a novel therapeutic target for TRAPS and possibly other similar diseases.


Asunto(s)
Autofagia/genética , Enfermedades Autoinflamatorias Hereditarias/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Adolescente , Adulto , Autofagia/fisiología , Estudios de Casos y Controles , Niño , Preescolar , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Persona de Mediana Edad , FN-kappa B/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Síndrome
11.
Head Neck ; 45(10): 2589-2604, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563936

RESUMEN

BACKGROUND: This prospective observational study investigated the determinants of malignant transformation (MT) in localized oral leukoplakia (OL) and proliferative verrucous leukoplakia (PVL). METHODS: Demographic, clinical, histological, and DNA ploidy status data were collected at enrolment. Survival analysis was performed (MT being the event of interest). RESULTS: One-hundred and thirty-three patients with OL and 20 patients with PVL entered the study over 6 years (mean follow-up 7.8 years). The presence of OED, DNA ploidy, clinical presentation, and lesion site were associated with MT in patients with OL in a univariate analysis. In a multivariate model, OED was the strongest predictor of MT in patients with OL. Adding DNA ploidy increased the model's predictive power. None of the assessed predictors was associated with MT in patients with PVL. CONCLUSIONS: DNA ploidy might identify a subset OL with low risk or minimal risk of MT, but it does not seem to be a reliable predictor in patients with PVL.


Asunto(s)
Neoplasias de la Boca , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Estudios Prospectivos , Leucoplasia Bucal/genética , Leucoplasia Bucal/patología , Ploidias , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , ADN
12.
Membranes (Basel) ; 13(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37367744

RESUMEN

Trastuzumab (Tz), an antibody targeting ERBB2, has significantly improved the prognosis for breast cancer (BCa) patients with overexpression of the ERBB2 receptor. However, Tz resistance poses a challenge to patient outcomes. Numerous mechanisms have been suggested to contribute to Tz resistance, and this study aimed to uncover shared mechanisms in in vitro models of acquired BCa Tz resistance. Three widely used ERBB2+ BCa cell lines, adapted to grow in Tz, were examined. Despite investigating potential changes in phenotype, proliferation, and ERBB2 membrane expression in these Tz-resistant (Tz-R) cell lines compared to wild-type (wt) cells, no common alterations were discovered. Instead, high-resolution mass spectrometry analysis revealed a shared set of differentially expressed proteins (DEPs) in Tz-R versus wt cells. Bioinformatic analysis demonstrated that all three Tz-R cell models exhibited modulation of proteins associated with lipid metabolism, organophosphate biosynthesis, and macromolecule methylation. Ultrastructural examination corroborated the presence of altered lipid droplets in resistant cells. These findings strongly support the notion that intricate metabolic adaptations, including lipid metabolism, protein phosphorylation, and potentially chromatin remodeling, may contribute to Tz resistance. The detection of 10 common DEPs across all three Tz-resistant cell lines offers promising avenues for future therapeutic interventions, providing potential targets to overcome Tz resistance and potentially improve patient outcomes in ERBB2+ breast cancer.

13.
Biochem Pharmacol ; 213: 115633, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269887

RESUMEN

Neratinib (NE) is an irreversible pan-ERBB tyrosine kinase inhibitor used to treat breast cancers (BCa) with amplification of the ERBB2/HER2/Neu gene or overexpression of the ERBB2 receptor. However, the mechanisms behind this process are not fully understood. Here we investigated the effects of NE on critical cell survival processes in ERBB2+ cancer cells. By kinome array analysis, we showed that NE time-dependently inhibited the phosphorylation of two distinct sets of kinases. The first set, including ERBB2 downstream signaling kinases such as ERK1/2, ATK, and AKT substrates, showed inhibition after 2 h of NE treatment. The second set, which comprised kinases involved in DNA damage response, displayed inhibition after 72 h. Flow cytometry analyses showed that NE induced G0/G1 cell cycle arrest and early apoptosis. By immunoblot, light and electron microscopy, we revealed that NE also transiently induced autophagy, mediated by increased expression levels and nuclear localization of TFEB and TFE3. Altered TFEB/TFE3 expression was accompanied by dysregulation of mitochondrial energy metabolism and dynamics, leading to a decrease in ATP production, glycolytic activity, and a transient downregulation of fission proteins. Increased TFEB and TFE3 expression was also observed in ERBB2-/ERBB1 + BCa cells, supporting that NE may act through other ERBB family members and/or other kinases. Overall, this study highlights NE as a potent activator of TFEB and TFE3, leading to the suppression of cancer cell survival through autophagy induction, cell cycle arrest, apoptosis, mitochondrial dysfunction and inhibition of DNA damage response.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Autofagia , Metabolismo Energético
14.
J Immunother Cancer ; 11(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36697251

RESUMEN

BACKGROUND: The current challenge for immunotherapies is to generate effective antitumor immunity. Since tumor immune escape mechanisms do not impact pre-existing and consolidated immune responses, we tested the hypothesis of redirecting a pregenerated immunity to cancer: to recall a non-tumor antigen response against the tumor, silk fibroin nanoparticles (SFNs) have been selected as 'Trojan-horse' carriers, promoting the antigen uptake by the tumor cells. METHODS: SFNs have been loaded with either ovalbumin (OVA) or CpG oligonucleotide (CpG) as antigen or adjuvant, respectively. In vitro uptake of SFNs by tumor (B16/F10 melanoma and MB49 bladder cancer) or dendritic cells, as well as the presence of OVA-specific T cells in splenic and tumor-infiltrating lymphocytes, were assessed by cytometric analyses. Proof-of-concept of in vivo efficacy was achieved in an OVA-hyperimmune B16/F10 murine melanoma model: SFNs-OVA or SFNs-CpG were injected, separately or in association, into the subcutaneous peritumoral area. Cancer dimensions/survival time were monitored, while, at the molecular level, system biology approaches based on graph theory and experimental proteomic data were performed. RESULTS: SFNs were efficiently in vitro uptaken by cancer and dendritic cells. In vivo peritumor administration of SFNs-OVA redirected OVA-specific cytotoxic T cells intratumorally. Proteomics and systems biology showed that peritumoral treatment with either SFNs-OVA or SFNs-CpG dramatically modified tumor microenvironment with respect to the control (CTR), mainly involving functional modules and hubs related to angiogenesis, inflammatory mediators, immune function, T complex and serpins expression, redox homeostasis, and energetic metabolism. Both SFNs-OVA and SFNs-CpG significantly delayed melanoma growth/survival time, and their effect was additive. CONCLUSIONS: Both SFNs-OVA and SFNs-CpG induce effective anticancer response through complementary mechanisms and show the efficacy of an innovative active immunotherapy approach based on the redirection of pre-existing immunity against cancer cells. This approach could be universally applied for solid cancer treatments if translated into the clinic using re-call antigens of childhood vaccination.


Asunto(s)
Fibroínas , Melanoma Experimental , Ratones , Animales , Proteómica , Linfocitos T Citotóxicos , Adyuvantes Inmunológicos , Ovalbúmina , Microambiente Tumoral
15.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36765842

RESUMEN

BACKGROUND: Metastatic uveal melanoma (MUM) is a highly aggressive, therapy-resistant disease. Driver mutations in Gα-proteins GNAQ and GNA11 activate MAP-kinase and YAP/TAZ pathways of oncogenic signalling. MAP-kinase and MEK-inhibitors do not significantly block MUM progression, likely due to persisting YAP/TAZ signalling. Statins inhibit YAP/TAZ activation by blocking the mevalonate pathway, geranyl-geranylation, and subcellular localisation of the Rho-GTPase. We investigated drugs that affect the YAP/TAZ pathway, valproic acid, verteporfin and statins, in combination with MEK-inhibitor trametinib. METHODS: We established IC50 values of the individual drugs and monitored the effects of their combinations in terms of proliferation. We selected trametinib and cerivastatin for evaluation of cell cycle and apoptosis. Synergism was detected using isobologram and Chou-Talalay analyses. The most synergistic combination was tested in vivo. RESULTS: Synergistic concentrations of trametinib and cerivastatin induced a massive arrest of proliferation and cell cycle and enhanced apoptosis, particularly in the monosomic, BAP1-mutated UPMM3 cell line. The combined treatment reduced ERK and AKT phosphorylation, increased the inactive, cytoplasmatic form of YAP and significantly impaired the growth of UM cells with monosomy of chromosome 3 in NSG mice. CONCLUSION: Statins can potentiate the efficacy of MEK inhibitors in the therapy of UM.

16.
BMC Cancer ; 12: 358, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901239

RESUMEN

BACKGROUND: Most patients affected by Glioblastoma multiforme (GBM, grade IV glioma) experience a recurrence of the disease because of the spreading of tumor cells beyond surgical boundaries. Unveiling mechanisms causing this process is a logic goal to impair the killing capacity of GBM cells by molecular targeting.We noticed that our long-term GBM cultures, established from different patients, may display two categories/types of growth behavior in an orthotopic xenograft model: expansion of the tumor mass and formation of tumor branches/nodules (nodular like, NL-type) or highly diffuse single tumor cell infiltration (HD-type). METHODS: We determined by DNA microarrays the gene expression profiles of three NL-type and three HD-type long-term GBM cultures. Subsequently, individual genes with different expression levels between the two groups were identified using Significance Analysis of Microarrays (SAM). Real time RT-PCR, immunofluorescence and immunoblot analyses, were performed for a selected subgroup of regulated gene products to confirm the results obtained by the expression analysis. RESULTS: Here, we report the identification of a set of 34 differentially expressed genes in the two types of GBM cultures. Twenty-three of these genes encode for proteins localized to the plasma membrane and 9 of these for proteins are involved in the process of cell adhesion. CONCLUSIONS: This study suggests the participation in the diffuse infiltrative/invasive process of GBM cells within the CNS of a novel set of genes coding for membrane-associated proteins, which should be thus susceptible to an inhibition strategy by specific targeting.Massimiliano Monticone and Antonio Daga contributed equally to this work.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Anciano , Animales , Neoplasias Encefálicas/metabolismo , Aberraciones Cromosómicas , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Glioblastoma/metabolismo , Humanos , Immunoblotting , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Invasividad Neoplásica , Trasplante de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Componente Principal , Reproducibilidad de los Resultados , Trasplante Heterólogo , Células Tumorales Cultivadas
17.
J Oral Pathol Med ; 41(2): 119-23, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21950471

RESUMEN

OBJECTIVE: 'Field cancerization' is an accepted model for oral carcinogenesis. So far, genetically altered fields have been just reported in the presence of carcinomas. This study assessed the distant mirror fields (MFs) of oral precancer by DNA high-resolution flow cytometry (hr DNA-FCM) and array-Comparative Genomic Hybridization (a-CGH). METHODS: Five leukoplakias without dysplasia (OLs), seven dysplastic leukoplakias (DOLs), and 12 corresponding visually normal and non-dysplastic MFs were analyzed. DNA aneuploidy (DNA Index, DI ≠ 1) was detected by hr DNA-FCM on DAPI stained nuclei suspensions. The epithelial DNA aneuploid subclones were FCM-sorted to obtain genomic DNA for a-CGH. RESULTS: Mirror fields, OLs, and DOLs showed increasing prevalence of DNA aneuploidy of, respectively, 8%, 20%, and 57%. The average number of chromosome aberrations (Ch-Abs) was 2.8 in MFs, 3 in OLs, and 10.6 in DOLs. MFs relative to OLs and DOLs had average numbers of Ch-Abs, respectively, of 1.8 and 3.6. Ch-Abs were also observed in DNA diploid sublines, and often the same aberrations were observed in both MFs and corresponding OLs/DOLs. CONCLUSION: DNA aneuploidy and Ch-Abs in MFs, the last ones being mainly gains, indicate an early onset of field effect in oral carcinogenesis.


Asunto(s)
Hibridación Genómica Comparativa/métodos , ADN de Neoplasias/análisis , Citometría de Flujo/métodos , Neoplasias de la Boca/genética , Lesiones Precancerosas/genética , Adulto , Anciano , Aneuploidia , Núcleo Celular/ultraestructura , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Inestabilidad Cromosómica/genética , Aberraciones Cromosómicas/clasificación , Diploidia , Femenino , Colorantes Fluorescentes , Humanos , Indoles , Leucoplasia Bucal/genética , Leucoplasia Bucal/patología , Masculino , Persona de Mediana Edad , Mucosa Bucal/citología , Neoplasias de la Boca/patología , Proyectos Piloto , Lesiones Precancerosas/patología
18.
Future Oncol ; 8(10): 1257-71, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23130927

RESUMEN

Carcinogen exposure of the oral cavity is thought to create an extensive 'field cancerization'. According to this model, a very early precursor of oral cancer is a patch of normal-appearing mucosa in which stem cells share genetic/genomic aberrations. These precancerous fields then become clinically visible as white and red lesions (leuko- and erythro-plakias), which represent the vast majority of the oral potentially malignant disorders. This review focuses on aneuploidy (where it is from) and on biomarkers associated with DNA aneuploidy in oral mucosa and oral potentially malignant disorders, as detected by DNA image and flow cytometry. Data from the literature strongly support the association of DNA ploidy with dysplasia. However, work is still needed to prove the clinical value of DNA ploidy in large-scale prospective studies. Using high-resolution DNA flow cytometry with fresh/frozen material and the degree of DNA aneuploidy (DNA Index) might improve the prediction of risk of oral cancer development.


Asunto(s)
Aneuploidia , Inestabilidad Cromosómica/genética , ADN de Neoplasias/análisis , Neoplasias de la Boca , Citometría de Flujo , Humanos , Mucosa Bucal/patología , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Factores de Riesgo
19.
Front Immunol ; 13: 849140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222440

RESUMEN

We report a case of inflammatory colitis after SARS-CoV-2 infection in a patient with no additional co-morbidity who died within three weeks of hospitalization. As it is becoming increasingly clear that SARS-CoV-2 infection can cause immunological alterations, we investigated the expression of the inhibitory checkpoint PD-1 and its ligand PD-L1 to explore the potential role of this axis in the break of self-tolerance. The presence of the SARS-CoV-2 virus in colon tissue was demonstrated by qRT-PCR and immunohistochemical localization of the nucleocapsid protein. Expression of lymphocyte markers, PD-1, and PD-L1 in colon tissue was investigated by IHC. SARS-CoV-2-immunoreactive cells were detected both in the ulcerated and non-ulcerated mucosal areas. Compared to healthy tissue, where PD-1 is weakly expressed and PD-L1 is absent, PD-1 and PD-L1 expression appears in the inflamed mucosal tissue, as expected, but was mainly confined to non-ulcerative areas. At the same time, these markers were virtually undetectable in areas of mucosal ulceration. Our data show an alteration of the PD-1/PD-L1 axis and suggest a link between SARS-CoV-2 infection and an aberrant autoinflammatory response due to concomitant breakdown of the PD-1/PD-L1 interaction leading to early death of the patient.


Asunto(s)
COVID-19/inmunología , Colitis/inmunología , Colon/metabolismo , Síndrome de Liberación de Citoquinas/inmunología , Inflamación/inmunología , SARS-CoV-2/fisiología , Anciano , Antígeno B7-H1/metabolismo , Colon/patología , Resultado Fatal , Femenino , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Autotolerancia , Transducción de Señal
20.
Life (Basel) ; 12(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36362982

RESUMEN

We analyzed the morphology and the transcriptomic changes of human neural stem progenitor cells (hNSPCs) grown on laminin in adherent culture conditions and subjected to simulated microgravity for different times in a random positioning machine apparatus. Low-cell-density cultures exposed to simulated microgravity for 24 h showed cell aggregate formation and significant modulation of several genes involved in focal adhesion, cytoskeleton regulation, and cell cycle control. These effects were much more limited in hNSPCs cultured at high density in the same conditions. We also found that some of the genes modulated upon exposure to simulated microgravity showed similar changes in hNSPCs grown without laminin in non-adherent culture conditions under normal gravity. These results suggest that reduced gravity counteracts the interactions of cells with the extracellular matrix, inducing morphological and transcriptional changes that can be observed in low-density cultures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA