RESUMEN
BACKGROUND: The combination of sodium bisulfite treatment with highly-parallel sequencing is a common method for quantifying DNA methylation across the genome. The power to detect between-group differences in DNA methylation using bisulfite-sequencing approaches is influenced by both experimental (e.g. read depth, missing data and sample size) and biological (e.g. mean level of DNA methylation and difference between groups) parameters. There is, however, no consensus about the optimal thresholds for filtering bisulfite sequencing data with implications for the reproducibility of findings in epigenetic epidemiology. RESULTS: We used a large reduced representation bisulfite sequencing (RRBS) dataset to assess the distribution of read depth across DNA methylation sites and the extent of missing data. To investigate how various study variables influence power to identify DNA methylation differences between groups, we developed a framework for simulating bisulfite sequencing data. As expected, sequencing read depth, group size, and the magnitude of DNA methylation difference between groups all impacted upon statistical power. The influence on power was not dependent on one specific parameter, but reflected the combination of study-specific variables. As a resource to the community, we have developed a tool, POWEREDBiSeq, which utilizes our simulation framework to predict study-specific power for the identification of DNAm differences between groups, taking into account user-defined read depth filtering parameters and the minimum sample size per group. CONCLUSIONS: Our data-driven approach highlights the importance of filtering bisulfite-sequencing data by minimum read depth and illustrates how the choice of threshold is influenced by the specific study design and the expected differences between groups being compared. The POWEREDBiSeq tool, which can be applied to different types of bisulfite sequencing data (e.g. RRBS, whole genome bisulfite sequencing (WGBS), targeted bisulfite sequencing and amplicon-based bisulfite sequencing), can help users identify the level of data filtering needed to optimize power and aims to improve the reproducibility of bisulfite sequencing studies.
Asunto(s)
Metilación de ADN , Sulfitos , Epigenómica , Secuenciación de Nucleótidos de Alto Rendimiento , Reproducibilidad de los Resultados , Análisis de Secuencia de ADNRESUMEN
Increasing evidence suggests that alternative splicing plays an important role in Alzheimer's disease (AD) pathology. We used long-read sequencing in combination with a novel bioinformatics tool (FICLE) to profile transcript diversity in the entorhinal cortex of female transgenic (TG) mice harboring a mutant form of human tau. Our analyses revealed hundreds of novel isoforms and identified differentially expressed transcripts - including specific isoforms of Apoe, App, Cd33, Clu, Fyn and Trem2 - associated with the development of tau pathology in TG mice. Subsequent profiling of the human cortex from AD individuals and controls revealed similar patterns of transcript diversity, including the upregulation of the dominant TREM2 isoform in AD paralleling the increased expression of the homologous transcript in TG mice. Our results highlight the importance of differential transcript usage, even in the absence of gene-level expression alterations, as a mechanism underpinning gene regulation in the development of AD neuropathology.
Asunto(s)
Enfermedad de Alzheimer , Corteza Entorrinal , Ratones Transgénicos , Isoformas de Proteínas , Proteínas tau , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Animales , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Femenino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratones , Modelos Animales de Enfermedad , Empalme Alternativo/genética , Regulación de la Expresión GénicaRESUMEN
Parkinson's disease is a highly heterogeneous disorder, encompassing a complex spectrum of clinical presentation including motor, sleep, cognitive and neuropsychiatric symptoms. We aimed to investigate genome-wide DNA methylation networks in post-mortem Parkinson's disease brain samples and test for region-specific association with common neuropsychiatric and cognitive symptoms. Of traits tested, we identify a co-methylation module in the substantia nigra with significant correlation to depressive symptoms and with ontological enrichment for terms relevant to neuronal and synaptic processes. Notably, expression of the genes annotated to the methylation loci present within this module are found to be significantly enriched in neuronal subtypes within the substantia nigra. These findings highlight the potential involvement of neuronal-specific changes within the substantia nigra with regard to depressive symptoms in Parkinson's disease.
RESUMEN
Vertebrate and invertebrate models of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, have been paramount to our understanding of the pathophysiology of these conditions; however, the brain epigenetic landscape is less well established in these disease models. DNA methylation, histone modifications, and microRNAs are among commonly studied mechanisms of epigenetic regulation. Genome-wide studies and candidate studies of specific methylation marks, histone marks, and microRNAs have demonstrated the dysregulation of these mechanisms in models of neurodegenerative diseases; however, the studies to date are scarce and inconclusive and the implications of many of these changes are still not fully understood. In this review, we summarize epigenetic changes reported to date in the brain of vertebrate and invertebrate models used to study neurodegenerative diseases, specifically diseases affecting the aging population. We also discuss caveats of epigenetic research so far and the use of disease models to understand neurodegenerative diseases, with the aim of improving the use of model organisms in this context in future studies.
RESUMEN
Alternative splicing is a post-transcriptional regulatory mechanism producing distinct mRNA molecules from a single pre-mRNA with a prominent role in the development and function of the central nervous system. We used long-read isoform sequencing to generate full-length transcript sequences in the human and mouse cortex. We identify novel transcripts not present in existing genome annotations, including transcripts mapping to putative novel (unannotated) genes and fusion transcripts incorporating exons from multiple genes. Global patterns of transcript diversity are similar between human and mouse cortex, although certain genes are characterized by striking differences between species. We also identify developmental changes in alternative splicing, with differential transcript usage between human fetal and adult cortex. Our data confirm the importance of alternative splicing in the cortex, dramatically increasing transcriptional diversity and representing an important mechanism underpinning gene regulation in the brain. We provide transcript-level data for human and mouse cortex as a resource to the scientific community.
Asunto(s)
Corteza Cerebral/metabolismo , Isoformas de Proteínas/genética , Transcriptoma/genética , Empalme Alternativo/genética , Animales , Encéfalo/metabolismo , Corteza Cerebral/fisiología , Exones/genética , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Isoformas de Proteínas/metabolismo , Precursores del ARN/genética , Sitios de Empalme de ARN/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodosRESUMEN
Phosphatidic acid (PA) is a signaling lipid involved in the modulation of synaptic structure and functioning. Based on previous work showing a decreasing PA gradient along the longitudinal axis of the rodent hippocampus, we asked whether the dorsal hippocampus (DH) and the ventral hippocampus (VH) are differentially affected by PA modulation. Here, we show that phospholipase D1 (PLD1) is a major hippocampal PA source, compared to PLD2, and that PLD1 ablation affects predominantly the lipidome of the DH. Moreover, Pld1 knockout (KO) mice show specific deficits in novel object recognition and social interaction and disruption in the DH-VH dendritic arborization differentiation in CA1/CA3 pyramidal neurons. Also, Pld1 KO animals present reduced long-term depression (LTD) induction and reduced GluN2A and SNAP-25 protein levels in the DH. Overall, we observe that PLD1-derived PA reduction leads to differential lipid signatures along the longitudinal hippocampal axis, predominantly affecting DH organization and functioning.
Asunto(s)
Eliminación de Gen , Hipocampo/enzimología , Hipocampo/fisiología , Fosfolipasa D/metabolismo , Animales , Dendritas/metabolismo , Lipidómica , Depresión Sináptica a Largo Plazo , Ratones Noqueados , Prueba de Campo Abierto , Ácidos Fosfatidicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Conducta Social , Proteína 25 Asociada a Sinaptosomas/metabolismo , Análisis y Desempeño de TareasRESUMEN
Alzheimer's disease (AD) is associated with the intracellular aggregation of hyperphosphorylated tau and the accumulation of ß-amyloid in the neocortex. We use transgenic mice harboring human tau (rTg4510) and amyloid precursor protein (J20) mutations to investigate transcriptional changes associated with the progression of tau and amyloid pathology. rTg4510 mice are characterized by widespread transcriptional differences in the entorhinal cortex with changes paralleling neuropathological burden across multiple brain regions. Differentially expressed transcripts overlap with genes identified in genetic studies of familial and sporadic AD. Systems-level analyses identify discrete co-expression networks associated with the progressive accumulation of tau that are enriched for genes and pathways previously implicated in AD pathology and overlap with co-expression networks identified in human AD cortex. Our data provide further evidence for an immune-response component in the accumulation of tau and reveal molecular pathways associated with the progression of AD neuropathology.