Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
Microcirculation ; 30(7): e12825, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37549191

RESUMEN

OBJECTIVES: This study aimed to evaluate the effects of the antidiabetics liraglutide, a GLP-1 analog, and empagliflozin, an SGLT-2 inhibitor, on the brain microcirculation of diabetic rats. METHODS: Type 2 diabetes mellitus (DM) was experimentally induced in male Wistar rats by combining a high-fat diet and a low dose of streptozotocin (35 mg/kg). Liraglutide (100 µg/kg s.c.) and empagliflozin (10 mg/kg, oral) were administered for 5 weeks. Body weight was monitored periodically. Oral glucose tolerance, fasting glycemia, and blood triglycerides were evaluated after the treatments. Endothelial-leukocyte interactions in the brain microcirculation and structural capillary density were assessed. RESULTS: DM rats presented metabolic and cerebrovascular alterations. Liraglutide treatment decreased body weight and blood triglycerides of DM rats. Empagliflozin treatment improved glucose tolerance but only the combination therapy significantly reduced fasting blood glucose. Both treatments and their combination reduced leukocyte adhesion into the endothelium of brain venules. However, empagliflozin was more effective in preventing DM-induced microvascular rarefaction. CONCLUSION: These findings suggest that chronic treatment with SGLT2 inhibitors and GLP-1 receptor agonists may serve as potential therapeutic approaches to prevent microvascular complications associated with diabetes.

2.
Dev Neurosci ; 44(1): 13-22, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34695825

RESUMEN

6-Shogaol is one of the main active phenolic components of ginger and has neuroprotective effects by protecting brain against the oxidative stress and regulate the levels of neurotrophic factors. The objective of the present study was to verify the effect of 6-shogaol on neurochemical parameters in offspring after maternal immune activation by lipopolysaccharide (LPS) in rats. Twelve pregnant Wistar rats received 100 µg/kg of LPS or saline solution on the gestational day 9.5. Male offspring participated in the study and from the postnatal days (PND) 30 and 55, respectively, they were supplemented with 6-shogaol or saline solution, by gavage at a dose of 10 mg/kg/day, orally for 5 days. In PND 37 and 62, analysis of kinase signaling regulated by extracellular signal 1/2 (ERK 1/2), levels of neurotrophic factor derived from the brain (BDNF), and neuron-specific enolase (NSE), lipid and protein oxidative damage was evaluated by 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine (3-NT), respectively, and myeloperoxidase (MPO) activity was performed in the hippocampus. Prenatal exposure to LPS significantly decreased ERK and BDNF levels in PND 37 and 62, increased NSE levels and lipid damage in rats in PND 37, and increased 3-NT level in rats in PND 62. With treatment using 6-shogaol, an increase in ERK and BDNF levels was identified in PND 37 and 62 and a reduction in HNE and MPO activity in rats in PND 37 and 62, respectively. 6-Shogaol positively increased markers of neuronal growth, plasticity and synaptic activity and reduced oxidative damage in the hippocampus in an animal model of autism by maternal immune activation.


Asunto(s)
Lipopolisacáridos , Efectos Tardíos de la Exposición Prenatal , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Catecoles , Femenino , Hipocampo/metabolismo , Humanos , Lipopolisacáridos/toxicidad , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Wistar , Solución Salina
3.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36142848

RESUMEN

The chymotrypsin-like cysteine protease (3CLpro, also known as main protease-Mpro) and papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been used as the main targets for screening potential synthetic inhibitors for posterior in vitro evaluation of the most promising compounds. In this sense, the present work reports for the first time the evaluation of the interaction between Mpro/PLpro with a series of 17 porphyrin analogues-corrole (C1), meso-aryl-corrole (C2), and 15 fluorinated-meso-aryl-corrole derivatives (C3-C17) via molecular docking calculations. The impact of fluorine atoms on meso-aryl-corrole structure was also evaluated in terms of binding affinity and physical-chemical properties by two-dimensional quantitative structure-activity relationship (2D-QSAR). The presence of phenyl moieties increased the binding capacity of corrole for both proteases and depending on the position of fluorine atoms might impact positively or negatively the binding capacity. For Mpro the para-fluorine atoms might decrease drastically the binding capacity, while for PLpro there was a certain increase in the binding affinity of fluorinated-corroles with the increase of fluorine atoms into meso-aryl-corrole structure mainly from tri-fluorinated insertions. The 2D-QSAR models indicated two separated regions of higher and lower affinity for Mpro:C1-C17 based on dual electronic parameters (σI and σR), as well as one model was obtained with a correlation between the docking score value of Mpro:C2-C17 and the corresponding 13C nuclear magnetic resonance (NMR) chemical shifts of the sp2 carbon atoms (δC-1 and δC-2) of C2-C17. Overall, the fluorinated-meso-aryl-corrole derivatives showed favorable in silico parameters as potential synthetic compounds for future in vitro assays on the inhibition of SARS-CoV-2 replication.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Porfirinas , Antivirales/farmacología , Carbono , Quimotripsina , Proteasas 3C de Coronavirus , Flúor , Humanos , Simulación del Acoplamiento Molecular , Papaína , Péptido Hidrolasas , Porfirinas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Relación Estructura-Actividad Cuantitativa , SARS-CoV-2
4.
J Neuroinflammation ; 18(1): 60, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632243

RESUMEN

BACKGROUND: The term sepsis is used to designate a systemic condition of infection and inflammation associated with hemodynamic changes that result in organic dysfunction. Gestational sepsis can impair the development of the central nervous system and may promote permanent behavior alterations in the offspring. The aim of our work was to evaluate the effects of maternal sepsis on inflammatory cytokine levels and synaptic proteins in the hippocampus, neocortex, frontal cortex, and cerebellum of neonatal, young, and adult mice. Additionally, we analyzed the motor development, behavioral features, and cognitive impairments in neonatal, young and adult offspring. METHODS: Pregnant mice at the 14th embryonic day (E14) were intratracheally instilled with saline 0.9% solution (control group) or Klebsiella spp. (3 × 108 CFU) (sepsis group) and started on meropenem after 5 h. The offspring was sacrificed at postnatal day (P) 2, P8, P30, and P60 and samples of liver, lung, and brain were collected for TNF-α, IL-1ß, and IL-6 measurements by ELISA. Synaptophysin, PSD95, and ß-tubulin levels were analyzed by Western blot. Motor tests were performed at all analyzed ages and behavioral assessments were performed in offspring at P30 and P60. RESULTS: Gestational sepsis induces a systemic pro-inflammatory response in neonates at P2 and P8 characterized by an increase in cytokine levels. Maternal sepsis induced systemic downregulation of pro-inflammatory cytokines, while in the hippocampus, neocortex, frontal cortex, and cerebellum an inflammatory response was detected. These changes in the brain immunity were accompanied by a reduction of synaptophysin and PSD95 levels in the hippocampus, neocortex, frontal cortex, and cerebellum, in all ages. Behavioral tests demonstrated motor impairment in neonates, and depressive-like behavior, fear-conditioned memory, and learning impairments in animals at P30 and P60, while spatial memory abilities were affected only at P60, indicating that gestational sepsis not only induces an inflammatory response in neonatal mouse brains, but also affects neurodevelopment, and leads to a plethora of behavioral alterations and cognitive impairments in the offspring. CONCLUSION: These data suggest that maternal sepsis may be causatively related to the development of depression, learning, and memory impairments in the litter.


Asunto(s)
Encéfalo/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Sepsis/inmunología , Animales , Conducta Animal , Encéfalo/metabolismo , Disfunción Cognitiva/etiología , Femenino , Inflamación , Ratones , Actividad Motora/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Sepsis/complicaciones , Sinapsis/metabolismo
5.
Microvasc Res ; 134: 104119, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33278457

RESUMEN

BACKGROUND: Microvascular dysfunction, serum cytokines and chemokines may play important roles in pathophysiology of coronavirus disease 2019 (COVID-19), especially in severe cases. METHODS: Patients with COVID-19 underwent non-invasive evaluation of systemic endothelium-dependent microvascular reactivity - using laser Doppler perfusion monitoring in the skin of the forearm - coupled to local thermal hyperemia. Maximal microvascular vasodilatation (44 °C thermal plateau phase) was used as endpoint. A multiplex biometric immunoassay was used to assess a panel of 48 serum cytokines and chemokines. Severe COVID-19 (S-COVID) was defined according to WHO criteria, while all other cases of COVID-19 were considered mild to moderate (M-COVID). A group of healthy individuals who tested negative for SARS-CoV-2 served as a control group and was also evaluated with LDPM. RESULTS: Thirty-two patients with COVID-19 (25% S-COVID) and 14 controls were included. Basal microvascular flow was similar between M-COVID and controls (P = 0.69) but was higher in S-COVID than in controls (P = 0.005) and M-COVID patients (P = 0.01). The peak microvascular vasodilator response was markedly decreased in both patient groups (M-COVID, P = 0.001; S-COVID, P < 0.0001) compared to the healthy group. The percent increases in microvascular flow were markedly reduced in both patient groups (M-COVID, P < 0.0001; S-COVID, P < 0.0001) compared to controls. Patients with S-COVID had markedly higher concentrations of dissimilar proinflammatory cytokines and chemokines, compared to patients with M-COVID. CONCLUSIONS: In patients with COVID-19, especially with S-COVID, endothelium-dependent microvascular vasodilator responses are reduced, while serum cytokines and chemokines involved in the regulation of vascular function and inflammation are increased.


Asunto(s)
COVID-19/fisiopatología , Quimiocinas/metabolismo , Citocinas/metabolismo , Endotelio Vascular/fisiopatología , Microcirculación , Adulto , Anciano , Quimiocinas/sangre , Citocinas/sangre , Femenino , Voluntarios Sanos , Hemodinámica , Humanos , Inmunoensayo , Flujometría por Láser-Doppler , Masculino , Persona de Mediana Edad , Perfusión , Índice de Severidad de la Enfermedad
6.
Neuroimmunomodulation ; 28(1): 1-21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33910207

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has devastating effects on the population worldwide. Given this scenario, the extent of the impact of the disease on more vulnerable individuals, such as pregnant women, is of great concern. Although pregnancy may be a risk factor in respiratory virus infections, there are no considerable differences regarding COVID-19 severity observed between pregnant and nonpregnant women. In these circumstances, an emergent concern is the possibility of neurodevelopmental and neuropsychiatric harm for the offspring of infected mothers. Currently, there is no stronger evidence indicating vertical transmission of SARS-CoV-2; however, the exacerbated inflammatory response observed in the disease could lead to several impairments in the offspring's brain. Furthermore, in the face of historical knowledge on possible long-term consequences for the progeny's brain after infection by viruses, we must consider that this might be another deleterious facet of COVID-19. In light of neuroimmune interactions at the maternal-fetal interface, we review here the possible harmful outcomes to the offspring brains of mothers infected by SARS-CoV-2.


Asunto(s)
COVID-19/inmunología , Trastornos del Neurodesarrollo/fisiopatología , Neuroinmunomodulación/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , COVID-19/metabolismo , COVID-19/fisiopatología , Síndrome de Liberación de Citoquinas/inmunología , Decidua/inmunología , Femenino , Humanos , Tolerancia Inmunológica/inmunología , Transmisión Vertical de Enfermedad Infecciosa , Neuroinmunomodulación/fisiología , Placenta/inmunología , Embarazo , Complicaciones Infecciosas del Embarazo/metabolismo , Complicaciones Infecciosas del Embarazo/fisiopatología , SARS-CoV-2 , Cordón Umbilical/inmunología
7.
Mem Inst Oswaldo Cruz ; 116: e200552, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33950107

RESUMEN

Coronaviruses can cause a diverse array of clinical manifestations, from fever with symptoms of the common cold to highly lethal severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). SARS-CoV-2, the coronavirus discovered in Hubei province, China, at the end of 2019, became known worldwide for causing coronavirus disease 2019 (COVID-19). Over one year's time period, the scientific community has produced a large bulk of knowledge about this disease and countless reports about its immune-pathological aspects. This knowledge, including data obtained in postmortem studies, points unequivocally to a hypercoagulability state. However, the name COVID-19 tells us very little about the true meaning of the disease. Our proposal is more comprehensive; it intends to frame COVID-19 in more clinical terminology, making an analogy to viral haemorrhagic fever (VHF). Thus, we found irrefutable evidence in the current literature that COVID-19 is the first viral disease that can be branded as a viral thrombotic fever. This manuscript points out that SARS-CoV-2 goes far beyond pneumonia or SARS. COVID-19 infections promote remarkable interactions among the endothelium, coagulation, and immune response, building up a background capable of promoting a "thrombotic storm," much more than a "cytokine storm." The importance of a viral protease called main protease (Mpro) is highlighted as a critical component for its replication in the host cell. A deeper analysis of this protease and its importance on the coagulation system is also discussed for the first time, mainly because of its similarity with the thrombin and factor Xa molecules, as recently pointed out by structural comparison crystallographic structures.


Asunto(s)
COVID-19 , China , Fiebre , Humanos , SARS-CoV-2
8.
Mediators Inflamm ; 2020: 1839762, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33110395

RESUMEN

Sepsis is characterized by a life-threatening organ dysfunction caused by an unbalanced host response to microbe infection that can lead to death. Besides being currently the leading cause of death in intensive care units worldwide, sepsis can also induce long-term consequences among survivors, such as cognitive impairment. Statins (lipid-lowering drugs widely used to treat dyslipidemia) have been shown to possess pleiotropic anti-inflammatory and antimicrobial effects. These drugs act inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, the limiting step in cholesterol biosynthesis. In this work, we evaluated the therapeutic effects of simvastatin in an animal model of sepsis. In previous study from our group, statin pretreatment avoided cognitive damage and neuroinflammation in sepsis survivors. Herein, we focused on acute inflammation where sepsis was induced by cecal ligation and puncture (CLP), and the animals were treated with simvastatin (2 mg/kg) 6 h after surgery. We measured plasma biochemical markers of organ dysfunction, cell migration, cell activation, bacterial elimination, production of nitric oxide 24 h after CLP, survival rate for 7 days, and cognitive impairment 15 days after CLP. One single administration of simvastatin 6 h after CLP was able to prevent both liver and kidney dysfunction. In addition, this drug decreased cell accumulation in the peritoneum as well as the levels of TNF-α, MIF, IL-6, and IL-1ß. Simvastatin diminished the number of bacterial colony forming units (CFU) and increased the production of nitric oxide production in the peritoneum. Simvastatin treatment increased survival for the first 24 h, but it did not alter survival rate at the end of 7 days. Our results showed that posttreatment with simvastatin hampered organ dysfunction, increased local production of nitric oxide, improved bacterial clearance, and modulated inflammation in a relevant model of sepsis.


Asunto(s)
Citocinas/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Simvastatina/uso terapéutico , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Óxido Nítrico/metabolismo , Lavado Peritoneal , Células Madre
9.
J Neuroinflammation ; 15(1): 28, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382344

RESUMEN

BACKGROUND: Microglia function is essential to maintain the brain homeostasis. Evidence shows that aged microglia are primed and show exaggerated response to acute inflammatory challenge. Systemic inflammation signals to the brain inducing changes that impact cognitive function. However, the mechanisms involved in age-related cognitive decline associated to episodic systemic inflammation are not completely understood. The aim of this study was to identify neuropathological features associated to age-related cognitive decline in a mouse model of episodic systemic inflammation. METHODS: Young and aged Swiss mice were injected with low doses of LPS once a week for 6 weeks to induce episodic systemic inflammation. Sickness behavior, inflammatory markers, and neuroinflammation were assessed in different phases of systemic inflammation in young and aged mice. Behavior was evaluated long term after episodic systemic inflammation by open field, forced swimming, object recognition, and water maze tests. RESULTS: Episodic systemic inflammation induced systemic inflammation and sickness behavior mainly in aged mice. Systemic inflammation induced depressive-like behavior in both young and aged mice. Memory and learning were significantly affected in aged mice that presented lower exploratory activity and deficits in episodic and spatial memories, compared to aged controls and to young after episodic systemic inflammation. Systemic inflammation induced acute microglia activation in young mice that returned to base levels long term after episodic systemic inflammation. Aged mice presented dystrophic microglia in the hippocampus and entorhinal cortex at basal level and did not change morphology in the acute response to SI. Regardless of their dystrophic microglia, aged mice produced higher levels of pro-inflammatory (IL-1ß and IL-6) as well as pro-resolution (IL-10 and IL-4) cytokines in the brain. Also, higher levels of Nox2 expression, oxidized proteins and lower antioxidant defenses were found in the aged brains compared to the young after episodic systemic inflammation. CONCLUSIONS: Our data show that aged mice have increased susceptibility to episodic systemic inflammation. Aged mice that showed cognitive impairments also presented higher oxidative stress and abnormal production of cytokines in their brains. These results indicate that a neuroinflammation and oxidative stress are pathophysiological mechanisms of age-related cognitive impairments.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Estrés Oxidativo/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Masculino , Ratones
10.
Parasitol Res ; 117(11): 3585-3590, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30145706

RESUMEN

Antimalarial interventions mostly rely upon drugs, as chloroquine. However, plasmodial strains resistant to many drugs are constantly reported, leading to an expansion of malaria cases. Novel approaches are required to circumvent the drug resistance issue. Here, we describe the antimalarial potential of the chloroquine analogue 2-[[2-[(7-chloro-4-quinolinyl)amino]ethyl]amino] ethanol (PQUI08001/06). We observed that PQUI08001/06 treatment reduces parasitemia of both chloroquine-resistant and -sensitive strains of Plasmodium falciparum in vitro and P. berghei in vivo. Our data suggests that PQUI08001/06 is a potential antimalarial therapeutic alternative approach that could also target chloroquine-resistant plasmodial strains.


Asunto(s)
Antimaláricos/uso terapéutico , Cloroquina/análogos & derivados , Cloroquina/uso terapéutico , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Animales , Resistencia a Medicamentos/efectos de los fármacos , Humanos , Malaria/tratamiento farmacológico , Masculino , Ratones , Parasitemia/tratamiento farmacológico
11.
Biochem Biophys Res Commun ; 478(1): 378-384, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27412645

RESUMEN

Ouabain is a steroid hormone that binds to the enzyme Na(+), K(+) - ATPase and stimulates different intracellular pathways controlling growth, proliferation and cell survival. IL-1ß and TNF-α are pleiotropic molecules, conventionally regarded as pro-inflammatory cytokines with well-known effects in the immune system. In addition, IL-1ß and TNF-α also play important roles in the nervous system including neuroprotective effects. Previous data from our group showed that ouabain treatment is able to induce an increase in retinal ganglion cell survival kept in mixed retinal cell cultures. The aim of this work was to investigate if IL-1ß and TNF-α could be mediating the trophic effect of ouabain on retinal ganglion cells. Our results show that the trophic effect of ouabain on retinal ganglion cell was inhibited by either anti-IL-1ß or anti-TNF-α antibodies. In agreement, IL-1ß or TNF-α increased the retinal ganglion cells survival in a dose-dependent manner. Accordingly, ouabain treatment induces a temporal release of TNF-α and IL-1ß from retinal cell cultures. Interestingly, TNF-α and IL-1ß regulate each other intracellular levels. Our results suggest that ouabain treatment triggers the activation of TNF-α and IL-1ß signaling pathways leading to an increase in retinal ganglion cell survival.


Asunto(s)
Supervivencia Celular/inmunología , Interleucina-1beta/inmunología , Ouabaína/administración & dosificación , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/inmunología , Ratas , Células Ganglionares de la Retina/patología
12.
Int J Med Microbiol ; 306(1): 20-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26652129

RESUMEN

Pseudomonas aeruginosa is an opportunistic bacterium causing lung injury in immunocompromised patients correlated with high morbidity and mortality. Many bacteria, including P. aeruginosa, use extracellular signals to synchronize group behaviors, a process known as quorum sensing (QS). In the P. aeruginosa complex QS system controls expression of over 300 genes, including many involved in host colonization and disease. P. aeruginosa infection elicits a complex immune response due to a large number of immunogenic factors present in the bacteria or released during infection. Here, we focused on the mechanisms by which P. aeruginosa triggers lung injury and inflammation, debating the possible ways that P. aeruginosa evades the host immune system, which leads to immune suppression and resistance.


Asunto(s)
Interacciones Huésped-Patógeno , Lesión Pulmonar/patología , Neumonía Bacteriana/patología , Pseudomonas aeruginosa/patogenicidad , Regulación Bacteriana de la Expresión Génica , Humanos , Evasión Inmune , Inflamación/patología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/fisiología , Percepción de Quorum
13.
Inflamm Res ; 65(8): 587-602, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26995266

RESUMEN

INTRODUCTION: Sepsis is a complex inflammatory disorder believed to originate from an infection by any types of microbes and/or their products. It is the leading cause of death in intensive care units (ICUs) throughout the globe. The mortality rates depend both on the severity of infection and the host's response to infection. METHODS: Literature survey on pathobiology of sepsis in general and failure of more than hundred clinical trials conducted so far in search of a possible cure for sepsis resulted in the preparation of this manuscript. FINDINGS: Sepsis lacks a suitable animal model that mimics human sepsis. However, based on the results obtained in animal models of sepsis, clinical trials conducted so far have been disappointing. Although involvement of multiple mediators and pathways in sepsis has been recognized, only few components are being targeted and this could be the major reason behind the failure of clinical trials. CONCLUSION: Inability to recognize a single critical mediator of sepsis may be the underlying cause for the poor therapeutic intervention of sepsis. Therefore, sepsis is still considered as a disease-in search of cure.


Asunto(s)
Sepsis , Animales , Antibacterianos/uso terapéutico , Proteínas Bacterianas/inmunología , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos/inmunología , Sepsis/tratamiento farmacológico , Sepsis/epidemiología , Sepsis/etiología , Sepsis/inmunología
14.
Mol Cancer ; 14: 105, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25976744

RESUMEN

BACKGROUND: Na/K-ATPase (NKA) is inhibited by perillyl alcohol (POH), a monoterpene used in the treatment of tumors, including brain tumors. The NKA α1 subunit is known to be superexpressed in glioblastoma cells (GBM). This isoform is embedded in caveolar structures and is probably responsible for the signaling properties of NKA during apoptosis. In this work, we showed that POH acts in signaling cascades associated with NKA that control cell proliferation and/or cellular death. METHODS: NKA activity was measured by the amount of non-radioactive Rb(+) incorporation into cultured GBM cell lines (U87 and U251) and non-tumor cells (mouse astrocytes and VERO cells). Cell viability was measured by lactate dehydrogenase levels in the supernatants of POH-treated cells. Activated c-Jun N-terminal Kinase (JNK) and p38 were assessed by western blotting. Apoptosis was detected by flow cytometry and immunocytochemistry, and the release of interleukins was measured by ELISA. RESULTS: All four cell types tested showed a similar sensitivity for POH. Perillic acid (PA), the main metabolite of POH, did not show any effect on these cells. Though the cell viability decreased in a dose-dependent manner when cells were treated with POH, the maximum cytotoxic effect of PA obtained was 30% at 4 mM. 1.5 mM POH activated p38 in U87 cells and JNK in both U87 and U251 cells as well as mouse astrocytes. Dasatinib (an inhibitor of the Src kinase family) and methyl ß-cyclodextrin (which promotes cholesterol depletion in cell membranes) reduced the POH-induced activation of JNK1/2 in U87 cells, indicating that the NKA-Src complex participates in this mechanism. Inhibition of JNK1/2 by the JNK inhibitor V reduced the apoptosis of GBM cells that resulted from POH administration, indicating the involvement of JNK1/2 in programmed cell death. 1.5 mM POH increased the production of interleukin IL-8 in the U251 cell supernatant, which may indicate a possible strategy by which cells avoid the cytotoxic effects of POH. CONCLUSIONS: A signaling mechanism mediated by NKA may have an important role in the anti-tumor action of POH in GBM cells.


Asunto(s)
Antineoplásicos/farmacología , Terapia Molecular Dirigida , Monoterpenos/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclohexenos/farmacología , Citocinas/metabolismo , Dasatinib/farmacología , Activación Enzimática/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Modelos Biológicos , beta-Ciclodextrinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Med Microbiol Immunol ; 204(6): 673-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25904542

RESUMEN

ExoU is a potent proinflammatory toxin produced by Pseudomonas aeruginosa, a major agent of severe lung infection and sepsis. Because inflammation is usually associated with oxidative stress, we investigated the effect of ExoU on free radical production and antioxidant defense mechanisms during the course of P. aeruginosa infection. In an experimental model of acute pneumonia, ExoU accounted for increased lipid peroxidation in mice lungs as soon as 3 h after intratracheal instillation of PA103 P. aeruginosa strain. The contribution of airway cells to the generation of a redox imbalance was assessed by in vitro tests carried out with A549 airway epithelial cells. Cultures infected with the ExoU-producing PA103 P. aeruginosa strain produced significantly increased concentrations of lipid hydroperoxides, 8-isoprostane, reactive oxygen intermediates, peroxynitrite and nitric oxide (NO), when compared to cells infected with exoU-deficient mutants. Overproduction of NO by PA103-infected cells likely resulted from overexpression of both inducible and endothelial NO synthase isoforms. PA103 infection was also associated with a significantly increased activity of superoxide dismutase (SOD) and decreased levels of reduced glutathione (GSH), a major antioxidant compound. Our findings unveil another potential mechanism of tissue damage during infection by ExoU-producing P. aeruginosa strains.


Asunto(s)
Proteínas Bacterianas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Neumonía Bacteriana/metabolismo , Neumonía Bacteriana/microbiología , Pseudomonas aeruginosa/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología , Sepsis , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Femenino , Peroxidación de Lípido , Ratones , Superóxido Dismutasa/metabolismo
16.
Mediators Inflamm ; 2015: 260465, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26640323

RESUMEN

Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation.


Asunto(s)
Inflamación/inducido químicamente , Lesión Pulmonar/inducido químicamente , Ácido Oléico/toxicidad , Síndrome de Dificultad Respiratoria/etiología , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Modelos Animales de Enfermedad , Humanos , Inflamación/complicaciones , Mediadores de Inflamación/fisiología , Lesión Pulmonar/complicaciones , Edema Pulmonar/fisiopatología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores
17.
Biochem Biophys Res Commun ; 449(4): 477-82, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24845382

RESUMEN

Several diseases are related to retinal ganglion cell death, such as glaucoma, diabetes and other retinopathies. Many studies have attempted to identify factors that could increase neuroprotection after axotomy of these cells. Interleukin-6 has been shown to be able to increase the survival and regeneration of retinal ganglion cells (RGC) in mixed culture as well as in vivo. In this work we show that the trophic effect of IL-6 is mediated by adenosine receptor (A2aR) activation and also by the presence of extracellular BDNF. We also show that there is a complex cross-talk between IL-6, BDNF, the Adenosine A1 and A2a receptors that results in neuroprotection of retinal ganglion cells.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Interleucina-6/fisiología , Receptor de Adenosina A1/fisiología , Receptor de Adenosina A2A/fisiología , Células Ganglionares de la Retina/patología , Adenina/análogos & derivados , Adenina/farmacología , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Axotomía , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Fármacos Neuroprotectores/farmacología , Fenetilaminas/farmacología , Ratas , Receptor de Adenosina A1/biosíntesis , Receptor de Adenosina A2A/biosíntesis
18.
Respir Res ; 15: 93, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25265888

RESUMEN

BACKGROUND: Leptospiral glycolipoprotein (GLP) is a potent and specific Na/K-ATPase inhibitor. Severe pulmonary form of leptospirosis is characterized by edema, inflammation and intra-alveolar hemorrhage having a dismal prognosis. Resolution of edema and inflammation determines the outcome of lung injury. Na/K-ATPase activity is responsible for edema clearance. This enzyme works as a cell receptor that triggers activation of mitogen-activated protein kinase (MAPK) intracellular signaling pathway. Therefore, injection of GLP into lungs induces injury by triggering inflammation. METHODS: We injected GLP and ouabain, into mice lungs and compared their effects. Bronchoalveolar lavage fluid (BALF) was collected for cell and lipid body counting and measurement of protein and lipid mediators (PGE2 and LTB4). The levels of the IL-6, TNFα, IL-1B and MIP-1α were also quantified. Lung images illustrate the injury and whole-body plethysmography was performed to assay lung function. We used Toll-like receptor 4 (TLR4) knockout mice to evaluate leptospiral GLP-induced lung injury. Na/K-ATPase activity was determined in lung cells by nonradioactive rubidium incorporation. We analyzed MAPK p38 activation in lung and in epithelial and endothelial cells. RESULTS: Leptospiral GLP and ouabain induced lung edema, cell migration and activation, production of lipid mediators and cytokines and hemorrhage. They induced lung function alterations and inhibited rubidium incorporation. Using TLR4 knockout mice, we showed that the GLP action was not dependent on TLR4 activation. GLP activated of p38 and enhanced cytokine production in cell cultures which was reversed by a selective p38 inhibitor. CONCLUSIONS: GLP and ouabain induced lung injury, as evidenced by increased lung inflammation and hemorrhage. To our knowledge, this is the first report showing GLP induces lung injury. GLP and ouabain are Na/K-ATPase targets, triggering intracellular signaling pathways. We showed p38 activation by GLP-induced lung injury, which was may be linked to Na/K-ATPase inhibition. Lung inflammation induced by GLP was not dependent on TLR4 activation.


Asunto(s)
Leptospira interrogans , Lipopolisacáridos/toxicidad , Lipoproteínas/toxicidad , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/enzimología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/toxicidad , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Lesión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
19.
Braz J Infect Dis ; 27(1): 102719, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36423696

RESUMEN

Systemic microvascular dysfunction has been shown to be present in COVID-19, and serum cytokines are known to be involved in the regulation of vascular function. We sought to evaluate systemic microvascular endothelial function, with laser doppler perfusion monitoring (LDPM), and plasma levels of cytokines after acute COVID-19. Individuals admitted to a Cardiology hospital with acute COVID-19 and followed for 12-15 months after recovery underwent noninvasive evaluation of systemic endothelium-dependent microvascular reactivity by cutaneous LDPM with local thermal hyperemia (LTH). A multiplex biometric immunoassay panel was used to assess 48 serum cytokines and chemokines. Twenty patients and 14 control volunteers were enrolled. The areas under the curves of vasodilation induced by LTH were significantly increased after recovery (P=0.009) and were not different from values obtained in healthy volunteers (P = 0.85). The peak microvascular flow during LTH did also significantly increase (P = 0.02), and was not different form values obtained in healthy volunteers (P = 0.55). Several cytokines displayed significantly reduced serum concentrations after recovery from COVID-19. In conclusion, endothelium-dependent systemic microvascular reactivity improved after recovery from COVID-19 in patients with cardiovascular diseases, in parallel with a reduction in the levels of several serum cytokines and chemokines involved in the regulation of vascular function and inflammation.


Asunto(s)
COVID-19 , Hiperemia , Humanos , Citocinas , Microcirculación/fisiología , Vasodilatación/fisiología , Piel/irrigación sanguínea
20.
Front Immunol ; 14: 1287512, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38299144

RESUMEN

Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary endothelium and alveolar epithelium following edema formation and cell infiltration. Currently, there are no effective treatments for severe ARDS. Pathologies such as sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with respiratory failure. The primary mechanism of edema clearance is the epithelial cells' Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions across the cell membrane. Direct injury on alveolar cells or changes in ion transport caused by infections decreases the NKA activity, loosening tight junctions in epithelial cells and causing edema formation. In addition, NKA acts as a receptor triggering signal transduction in response to the binding of cardiac glycosides. The ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA. Besides enzymatic inhibition, the NKA triggers intracellular signal transduction, fostering proinflammatory cytokines production and contributing to lung injury. Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung injury, and intracellular signaling pathway activation leading to lung inflammation, thus putting the NKA as a protagonist in lung injury pathology.


Asunto(s)
Lesión Pulmonar , Neumonía , Síndrome de Dificultad Respiratoria , Humanos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Edema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA