Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Molecules ; 25(5)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182960

RESUMEN

The capability of synthesizing specific nanoparticles (NPs) by varying their shape, size and composition in a controlled fashion represents a typical set of engineering tools that tune the NPs magnetic response via their anisotropy. In particular, variations in NP composition mainly affect the magnetocrystalline anisotropy component, while the different magnetic responses of NPs with isotropic (i.e., spherical) or elongated shapes are mainly caused by changes in their shape anisotropy. In this context, we propose a novel route to obtain monodispersed, partially hollow magnetite nanorods (NRs) by colloidal synthesis, in order to exploit their shape anisotropy to increase the related coercivity; we then modify their composition via a cation exchange (CE) approach. The combination of a synthetic and post-synthetic approach on NRs gave rise to dramatic variations in their magnetic features, with the pores causing an initial magnetic hardening that was further enhanced by the post-synthetic introduction of a manganese oxide shell. Indeed, the coupling of the core and shell ferrimagnetic phases led to even harder magnetic NRs.


Asunto(s)
Compuestos Férricos/química , Magnetismo , Nanopartículas de Magnetita/química , Nanotubos/química , Anisotropía , Compuestos de Manganeso , Óxidos , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
2.
Molecules ; 25(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751978

RESUMEN

Silver nanoparticles were produced with AgF as the starting Ag(I) salt, with pectin as the reductant and protecting agent. While the obtained nanoparticles (pAgNP-F) have the same dimensional and physicochemical properties as those already described by us and obtained from AgNO3 and pectin (pAgNP-N), the silver nanoparticles from AgF display an increased antibacterial activity against E. coli PHL628 and Staphylococcus epidermidis RP62A (S. epidermidis RP62A), both as planktonic strains and as their biofilms with respect to pAgNP-N. In particular, a comparison of the antimicrobial and antibiofilm action of pAgNP-F has been carried out with pAgNP-N, pAgNP-N and added NaF, pure AgNO3, pure AgF, AgNO3 and added NaF and pure NaNO3 and NaF salts. By also measuring the concentration of the Ag+ cation released by pAgNP-F and pAgNP-N, we were able to unravel the separate contributions of each potential antibacterial agent, observing an evident synergy between p-AgNP and the F- anion: the F- anion increases the antibacterial power of the p-AgNP solutions even when F- is just 10 µM, a concentration at which F- alone (i.e., as its Na+ salt) is completely ineffective.


Asunto(s)
Antibacterianos/química , Biopelículas/efectos de los fármacos , Fluoruros/química , Nanopartículas del Metal/química , Compuestos de Plata/química , Plata/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Plancton/efectos de los fármacos , Plancton/microbiología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología
3.
Nanotechnology ; 29(8): 085702, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29286289

RESUMEN

Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect of post-grown thermal treatments on nanotube mechanical properties was investigated and carefully correlated to the chemico-physical parameters evolution. The Young's modulus of TiO2 nanotube rises linearly from 57 GPa up to 105 GPa for annealing at 600 °C depending on the compositional and crystallographic evolution of the nanostructure. Considering the growing interest in single nanostructure devices, the reported findings allow a deeper understanding of the properties of individual titanium dioxide nanotubes extrapolated from their standard arrayed architecture.

4.
Phys Chem Chem Phys ; 18(25): 16848-55, 2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27282828

RESUMEN

A simple, one pot method to synthesize water-dispersible Mn doped iron oxide colloidal clusters constructed of nanoparticles arranged into secondary flower-like structures was developed. This method allows the successful incorporation and homogeneous distribution of Mn within the nanoparticle iron oxide clusters. The formed clusters retain the desired morphological and structural features observed for pure iron oxide clusters, but possess intrinsic magnetic properties that arise from Mn doping. They show distinct performance as imaging contrast agents and excellent characteristics as heating mediators in magnetic fluid hyperthermia. It is expected that the outcomes of this study will open up new avenues for the exploitation of doped magnetic nanoparticle assemblies in biomedicine.

5.
J Am Chem Soc ; 136(46): 16277-84, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25340627

RESUMEN

We studied cation exchange reactions in colloidal Cu(2-x)Se nanocrystals (NCs) involving the replacement of Cu(+) cations with either Sn(2+) or Sn(4+) cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu(2-x)Se NCs remains cubic regardless of the degree of copper deficiency (that is, "x") in the NC lattice. Also, Sn(4+) ions are comparable in size to the Cu(+) ions, while Sn(2+) ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn(4+) cations are used, alloyed Cu(2-4y)Sn(y)Se NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu(+) cations with Sn(4+) cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn(2+) cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu(2-x)Se/SnSe heterostructures, with no Cu-Sn-Se alloys.

6.
Nano Lett ; 13(2): 752-7, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23297817

RESUMEN

We report a colloidal synthesis of Au(0.80)Pd(0.20)-Fe(x)O(y) dumbbell nanocrystals (NCs) derived from Au(0.75)Pd(0.25) NCs by metal oxide overgrowth. We compared the catalytic activity of the two types of NCs in the CO oxidation reaction (CO + 1/2O(2) → CO(2)), after they had been dispersed on an alumina nanopowder support. In both cases, the surface active sites were identified by means of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The enhanced catalytic performance of the dumbbell NCs (Au(0.80)Pd(0.20)-Fe(x)O(y)) catalyst over that of the initial Au(0.75)Pd(0.25) NCs could be correlated to the presence of the epitaxial connection between the Fe(x)O(y) and the Au(0.80)Pd(0.20) domains (as the main factor). Such connection should result in an electron flow from the metal oxide (Fe(x)O(y)) domain to the noble metal (Au(0.80)Pd(0.20)) domain and appears to influence favorably the nature and composition of the catalytically active surface sites of the dumbbells. Our experiments indicate indeed that, when the metal alloy domain is attached to the metal oxide domain (that is, in the dumbbell), surface Pd species are more active than in the case of the initial Au(0.75)Pd(0.25) NCs and also Au(δ-) sites are formed that were not present on the initial Au(0.75)Pd(0.25) NCs.


Asunto(s)
Monóxido de Carbono/química , Compuestos Férricos/química , Oro/química , Nanopartículas/química , Paladio/química , Coloides/química , Oxidación-Reducción
7.
J Am Chem Soc ; 135(46): 17630-7, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24128337

RESUMEN

Platelet-shaped copper sulfide nanocrystals (NCs) with tunable Cu stoichiometry were prepared from Cu-rich covellite (Cu1.1S) nanoplates through their reaction with a Cu(I) complex ([Cu(CH3CN)4]PF6) at room temperature. Starting from a common sample, by this approach it is possible to access a range of compositions in these NCs, varying from Cu1.1S up to Cu2S, each characterized by a different optical response: from the metallic covellite, with a high density of free carriers and strong localized surface plasmon resonance (LSPR), up to Cu2S NCs with no LSPR. In all these NCs the valency of Cu in the lattice stays always close to +1, while the average -1 valency of S in covellite gradually evolves to -2 with increasing Cu content; i.e., sulfur is progressively reduced. The addition of copper to the starting covellite NCs is similar to the intercalation of metal species in layered transition metal dichalcogenides (TMDCs); i.e., the chalcogen-chalcogen bonds holding the layers are progressively broken to make room for the intercalated metals, while their overall anion sublattice does not change much. However, differently from the TMDCs, the intercalation in covellite NCs is sustained by a change in the redox state of the anion framework. Furthermore, the amount of Cu incorporated in the NCs upon reaction is associated with the formation of an equimolar amount of Cu(II) species in solution. Therefore, the reaction scheme can be written as: Cu1.1S + 2γCu(I) → Cu1.1+γS + γCu(II).

8.
ACS Nano ; 17(17): 17058-17069, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37638526

RESUMEN

Cation exchange offers a strong postsynthetic tool for nanoparticles that are unachievable via direct synthesis, but its velocity makes observing the onset of the reaction in the liquid state almost impossible. After successfully proving that cation exchange reactions can be triggered, performed, and followed live at the solid state by an in situ transmission electron microscopy approach, we studied the deep mechanisms ruling the onset of cation exchange reactions, i.e., the adsorption, penetration, and diffusion of cations in the host matrices of two crystal phases of CdSe. Exploiting an in situ scanning transmission electron microscopy approach with a latest generation heating holder, we were able to trigger, freeze, and image the initial stages of cation exchange with much higher detail. Also, we found a connection between the crystal structure of CdSe, the starting temperature, and the route of the cation exchange reaction. All the experimental results were further reviewed by molecular dynamics simulations of the whole cation exchange reaction divided in subsequent steps. The simulations highlighted how the cation exchange mechanism and the activation energies change with the host crystal structures. Furthermore, the simulative results strongly corroborated the activation temperatures and the cation exchange rates obtained experimentally, providing a deeper understanding of its phenomenology and mechanism at the atomic scale.

9.
Chemistry ; 18(30): 9381-90, 2012 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-22736477

RESUMEN

By replacing cetyltrimethylammonium bromide (CTAB) with the zwitterionic lauryl sulfobetaine (LSB) surfactant in the classical seed-growth synthesis, monocrystalline gold nanostars (m-NS) and pentatwinned gold asymmetric nanostars (a-NS) were obtained instead of nanorods. The main product under all synthetic conditions was a-NS, which have branches with high aspect ratios (AR), thus leading to LSPR absorptions in the 750-1150 nm range. The percentage of m-NS versus a-NS, the aspect ratio of the a-NS branches, and consequently the position of their LSPR absorption can be finely tuned simply by regulating the concentration of reductant, the concentration of surfactant, or the concentration of the "catalytic" Ag(+) cation. The m-NS have instead shorter and larger branches, the AR of which is poorly influenced by synthetic conditions and displays an LSPR positioned around 700 nm. A growth mechanism that involves the direct contact of the sulfate moiety of LSB on the surface of the nano-object is proposed, thereby implying preferential coating of the {111} Au faces with weak interactions. Consistent with this, we also observed the straightforward complete displacement of the LSB surfactant from the surface of the nanostars. This was obtained by the simple addition of thiols in aqueous solution to yield extremely stable coated a-NS and m-NS that are resistant to highly acidic, basic, and in similar to in vivo conditions.

10.
Nanomaterials (Basel) ; 11(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34361209

RESUMEN

CsPbI3 inorganic perovskite is synthesized by a solvent-free, solid-state reaction, and its structural and optical properties can be deeply investigated using a multi-technique approach. X-ray Diffraction (XRD) and Raman measurements, optical absorption, steady-time and time-resolved luminescence, as well as High-Resolution Transmission Electron Microscopy (HRTEM) imaging, were exploited to understand phase evolution as a function of synthesis time length. Nanoparticles with multiple, well-defined crystalline domains of different crystalline phases were observed, usually surrounded by a thin, amorphous/out-of-axis shell. By increasing the synthesis time length, in addition to the pure α phase, which was rapidly converted into the δ phase at room temperature, a secondary phase, Cs4PbI6, was observed, together with the 715 nm-emitting γ phase.

11.
Nanomaterials (Basel) ; 11(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34685121

RESUMEN

CuFe2O4 is an example of ferrites whose physico-chemical properties can vary greatly at the nanoscale. Here, sol-gel techniques are used to produce CuFe2O4-SiO2 nanocomposites where copper ferrite nanocrystals are grown within a porous dielectric silica matrix. Nanocomposites in the form of both xerogels and aerogels with variable loadings of copper ferrite (5 wt%, 10 wt% and 15 wt%) were synthesized. Transmission electron microscopy and X-ray diffraction investigations showed the occurrence of CuFe2O4 nanoparticles with average crystal size ranging from a few nanometers up to around 9 nm, homogeneously distributed within the porous silica matrix, after thermal treatment of the samples at 900 °C. Evidence of some impurities of CuO and α-Fe2O3 was found in the aerogel samples with 10 wt% and 15 wt% loading. DC magnetometry was used to investigate the magnetic properties of these nanocomposites, as a function of the loading of copper ferrite and of the porosity characteristics. All the nanocomposites show a blocking temperature lower than RT and soft magnetic features at low temperature. The observed magnetic parameters are interpreted taking into account the occurrence of size and interaction effects in an ensemble of superparamagnetic nanoparticles distributed in a matrix. These results highlight how aerogel and xerogel matrices give rise to nanocomposites with different magnetic features and how the spatial distribution of the nanophase in the matrices modifies the final magnetic properties with respect to the case of conventional unsupported nanoparticles.

12.
ACS Nano ; 15(10): 15803-15814, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34585565

RESUMEN

The cellular uptake of nanoparticles (NPs) represents a critical step in nanomedicine and a crucial point for understanding the interaction of nanomaterials with biological systems. No specific mechanism of uptake has been identified so far, as the NPs are generally incorporated by the cells through one of the few well-known endocytotic mechanisms. Here, an alternative internalization route mediated by microvilli adhesion is demonstrated. This microvillus-mediated adhesion (MMA) has been observed using ceria and magnetite NPs with a dimension of <40 nm functionalized with polyacrylic acid but not using NPs with a neutral or positive functionalization. Such an adhesion was not cell specific, as it was demonstrated in three different cell lines. MMA was also reduced by modifications of the microvillus lipid rafts, obtained by depleting cholesterol and altering synthesis of sphingolipids. We found a direct relationship between MAA, cell cycle, and density of microvilli. The evidence suggests that MMA differs from the commonly described uptake mechanisms and might represent an interesting alternative approach for selective NP delivery.


Asunto(s)
Nanopartículas , Transporte Biológico , Endocitosis , Microvellosidades , Nanomedicina
13.
Antioxidants (Basel) ; 10(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572224

RESUMEN

Vascular oxidative stress is considered a worsening factor in the progression of Alzheimer's disease (AD). Increased reactive oxygen species (ROS) levels promote the accumulation of amyloid-ß peptide (Aß), one of the main hallmarks of AD. In turn, Aß is a potent inducer of oxidative stress. In early stages of AD, the concomitant action of oxidative stress and Aß on brain capillary endothelial cells was observed to compromise the blood-brain barrier functionality. In this context, antioxidant compounds might provide therapeutic benefits. To this aim, we investigated the antioxidant activity of cerium oxide nanoparticles (CNP) in human cerebral microvascular endothelial cells (hCMEC/D3) exposed to Aß oligomers. Treatment with CNP (13.9 ± 0.7 nm in diameter) restored basal ROS levels in hCMEC/D3 cells, both after acute or prolonged exposure to Aß. Moreover, we found that the extent of CNP uptake by hCMEC/D3 was +43% higher in the presence of Aß. Scanning electron microscopy and western blot analysis suggested that changes in microvilli structures on the cell surface, under pro-oxidant stimuli (Aß or H2O2), might be involved in the enhancement of CNP uptake. This finding opens the possibility to exploit the modulation of endothelial microvilli pattern to improve the uptake of anti-oxidant particles designed to counteract ROS-mediated cerebrovascular dysfunctions.

14.
J Colloid Interface Sci ; 583: 376-384, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011407

RESUMEN

Surfactant-mediated chemical routes allow one to synthesize highly engineered shape- and size-controlled nanocrystals. However, the occurrence of capping agents on the surface of the nanocrystals is undesirable for selected applications. Here, a novel approach to the production of shape-controlled nanocrystals which exhibit high thermal stability is demonstrated. Ceria nanocubes obtained by surfactant-mediated synthesis are embedded inside a highly porous silica aerogel and thermally treated to remove the capping agent. Powder X-ray Diffraction and Scanning Transmission Electron Microscopy show the homogeneous dispersion of the nanocubes within the aerogel matrix. Remarkably, both the size and the shape of the ceria nanocubes are retained not only throughout the aerogel syntheses but also upon thermal treatments up to 900 °C, while avoiding their agglomeration. The reactivity of ceria is measured by in situ High-Energy Resolution Fluorescence Detected - X-ray Absorption Near Edge Spectroscopy at the Ce L3 edge, and shows the reversibility of redox cycles of ceria nanocubes when they are embedded in the aerogel. This demonstrates that the enhanced reactivity due to their prominent {100} crystal facets is preserved. In contrast, unsupported ceria nanocubes begin to agglomerate as soon as the capping agent decomposes, leading to a degradation of their reactivity already at 275 °C.

15.
Nanoscale ; 12(31): 16627-16638, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32756695

RESUMEN

The tuning of the chemical composition in nanostructures is a key aspect to control for the preparation of new multifunctional and highly performing materials. The modification of Cu2-xSe nanocrystals with Pt could provide a good way to tune both optical and catalytic properties of the structure. Although the heterogeneous nucleation of metallic Pt domains on semiconductor chalcogenides has been frequently reported, the insertion of Pt into chalcogenide materials has not been conceived so far. In this work we have explored the experimental conditions to facilitate and enhance the insertion of Pt into the Cu2-xSe nanocrystalline lattice, forming novel ternary phases that show a high degree of miscibility and compositional variability. Our results show that Pt is mainly found as a pure metal or a CuPt alloy at high Pt loads (Pt : Cu atomic ratio in reaction medium >1). However, two main ternary CuPtSe phases with cubic and monoclinic symmetry can be identified when working at lower Pt : Cu atomic ratios. Their structure and chemical composition have been studied by local STEM-EDS and HRTEM analyses. The samples containing ternary domains have been loaded on graphite-like C3N4 (g-C3N4) semiconductor layers, and the resulting nanocomposite materials have been tested as promising photocatalysts for the production of H2 from aqueous ethanolic solutions.

16.
J Phys Chem A ; 113(50): 13901-6, 2009 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19842679

RESUMEN

High-resolution photoluminescence spectra of Fe:YAG crystals were recorded in the temperature range 10-150 K with different excitation energies, ranging from the band gap energy (6.88 eV) down to selective excitation of Fe(3+) ions (2.40 eV). Iron levels fine structure is found in the zero phonon lines, whose characteristics hint at the presence of the doping Fe(3+) ion in the tetrahedral site with a dynamic Jahn-Teller effect inherent in the (4)T(1) excited states. The analysis of the zero phonon interactions with acoustic phonons was achieved through linear and quadratic electron-phonon coupling models, and the Huang-Rhys factor, the Debye temperature, and the electron-phonon coupling were calculated in the framework of the Debye approximation by including only the Raman two-phonon process. The interactions with lattice phonons were studied, and the results were found to be correspondent to the expected results from previous vibrational data.

17.
RSC Adv ; 9(12): 6745-6751, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35518478

RESUMEN

Ceria nanocubes have been doped with increasing amounts of lanthanum to enhance their redox ability. X-ray diffraction and transmission electron microscopy techniques provide a consistent picture indicating that there is an upper limit to the lanthanum that can be incorporated in the fluorite structure of ceria nanocubes, which is close to 7.5 mol% La. This limited loading is nevertheless able to produce a significant enhancement of the ceria redox ability as evidenced by use of X-ray absorption spectroscopy to determine the Ce3+/Ce4+ ratio in samples submitted to a degassing treatment at room temperature.

18.
Nanomaterials (Basel) ; 9(2)2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30736299

RESUMEN

Herein we report a novel, easy, fast and reliable microwave-assisted synthesis procedure for the preparation of colloidal zinc oxide nanocrystals (ZnO NCs) optimized for biological applications. ZnO NCs are also prepared by a conventional solvo-thermal approach and the properties of the two families of NCs are compared and discussed. All of the NCs are fully characterized in terms of morphological analysis, crystalline structure, chemical composition and optical properties, both as pristine nanomaterials or after amino-propyl group functionalization. Compared to the conventional approach, the novel microwave-derived ZnO NCs demonstrate outstanding colloidal stability in ethanol and water with long shelf-life. Furthermore, together with their more uniform size, shape and chemical surface properties, this long-term colloidal stability also contributes to the highly reproducible data in terms of biocompatibility. Actually, a significantly different biological behavior of the microwave-synthesized ZnO NCs is reported with respect to NCs prepared by the conventional synthesis procedure. In particular, consistent cytotoxicity and highly reproducible cell uptake toward KB cancer cells are measured with the use of microwave-synthesized ZnO NCs, in contrast to the non-reproducible and scattered data obtained with the conventionally-synthesized ones. Thus, we demonstrate how the synthetic route and, as a consequence, the control over all the nanomaterial properties are prominent points to be considered when dealing with the biological world for the achievement of reproducible and reliable results, and how the use of commercially-available and under-characterized nanomaterials should be discouraged in this view.

19.
Nanomaterials (Basel) ; 8(1)2018 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-29342894

RESUMEN

The thermally-induced crystallization of anodically grown TiO2 amorphous nanotubes has been studied so far under ambient pressure conditions by techniques such as differential scanning calorimetry and in situ X-ray diffraction, then looking at the overall response of several thousands of nanotubes in a carpet arrangement. Here we report a study of this phenomenon based on an in situ transmission electron microscopy approach that uses a twofold strategy. First, a group of some tens of TiO2 amorphous nanotubes was heated looking at their electron diffraction pattern change versus temperature, in order to determine both the initial temperature of crystallization and the corresponding crystalline phases. Second, the experiment was repeated on groups of few nanotubes, imaging their structural evolution in the direct space by spherical aberration-corrected high resolution transmission electron microscopy. These studies showed that, differently from what happens under ambient pressure conditions, under the microscope's high vacuum (p < 10-5 Pa) the crystallization of TiO2 amorphous nanotubes starts from local small seeds of rutile and brookite, which then grow up with the increasing temperature. Besides, the crystallization started at different temperatures, namely 450 and 380 °C, when the in situ heating was performed irradiating the sample with electron beam energy of 120 or 300 keV, respectively. This difference is due to atomic knock-on effects induced by the electron beam with diverse energy.

20.
ACS Nano ; 11(6): 6233-6242, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28485979

RESUMEN

The insertion of intentional impurities, commonly referred to as doping, into colloidal semiconductor quantum dots (QDs) is a powerful paradigm for tailoring their electronic, optical, and magnetic behaviors beyond what is obtained with size-control and heterostructuring motifs. Advancements in colloidal chemistry have led to nearly atomic precision of the doping level in both lightly and heavily doped QDs. The doping strategies currently available, however, operate at the ensemble level, resulting in a Poisson distribution of impurities across the QD population. To date, the synthesis of monodisperse ensembles of QDs individually doped with an identical number of impurity atoms is still an open challenge, and its achievement would enable the realization of advanced QD devices, such as optically/electrically controlled magnetic memories and intragap state transistors and solar cells, that rely on the precise tuning of the impurity states (i.e., number of unpaired spins, energy and width of impurity levels) within the QD host. The only approach reported to date relies on QD seeding with organometallic precursors that are intrinsically unstable and strongly affected by chemical or environmental degradation, which prevents the concept from reaching its full potential and makes the method unsuitable for aqueous synthesis routes. Here, we overcome these issues by demonstrating a doping strategy that bridges two traditionally orthogonal nanostructured material systems, namely, QDs and metal quantum clusters composed of a "magic number" of atoms held together by stable metal-to-metal bonds. Specifically, we use clusters composed of four copper atoms (Cu4) capped with d-penicillamine to seed the growth of CdS QDs in water at room temperature. The elemental analysis, performed by electrospray ionization mass spectrometry, X-ray fluorescence, and inductively coupled plasma mass spectrometry, side by side with optical spectroscopy and transmission electron microscopy measurements, indicates that each Cu:CdS QD in the ensemble incorporates four Cu atoms originating from one Cu4 cluster, which acts as a "quantized" source of dopant impurities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA