RESUMEN
Melanoma has the highest propensity among solid tumors to metastasize to the brain. Melanoma brain metastases (MBM) are a leading cause of death in melanoma and affect 40-60% of patients with late-stage disease. Therefore, uncovering the molecular mechanisms behind MBM is necessary to enhance therapeutic interventions. Vascular mimicry (VM) is a form of neovascularization linked to invasion, increased risk of metastasis, and poor prognosis in many tumor types, but its significance in MBM remains poorly understood. We found that VM density is elevated in MBM compared to paired extracranial specimens and is associated with tumor volume and CNS edema. In addition, our studies indicate a relevant role of YAP and TAZ, two transcriptional co-factors scarcely studied in melanoma, in tumor cell-vasculogenesis and in brain metastasis. We recently demonstrated activation of the Hippo tumor suppressor pathway and increased degradation of its downstream targets YAP and TAZ in a metastasis impaired cell line model. In the current study we establish the utility of anti-YAP/TAZ therapy in mouse models of metastatic melanoma whereby treatment effectively inhibits VM and prolongs survival of mice with MBM. The data presented herein suggest that VM may be an important and targetable mechanism in melanoma and that VM inhibition might be useful for treating MBM, an area of high unmet clinical need, thus having important implications for future treatment regimens for these patients.
Asunto(s)
Neoplasias Encefálicas , Melanoma , Humanos , Animales , Ratones , Neovascularización Patológica , Encéfalo , Línea Celular , Factores de TranscripciónRESUMEN
PURPOSE OF REVIEW: Among solid tumors, melanoma has the highest propensity for brain dissemination. Although newer treatment approaches have resulted in excellent control or elimination of brain metastasis in many patients, they remain the cause of significant morbidity and mortality. Here, we review recent preclinical and clinical studies to detail current understanding of the incidence, prognosis, biological characteristics, and treatments for melanoma brain metastases. RECENT FINDINGS: Clinical trials tailored to this patient population have demonstrated prolonged disease control with immune checkpoint inhibitors. Emerging clinical challenges include radiation necrosis and perilesional edema, phenomena that are rarely seen in other organs. Recent preclinical studies have resulted in improved understanding of the tumor microenvironment in the brain, providing insights into additional treatment approaches. The biological basis of brain tumor homing and survival within the central nervous system remain understudied. Additional preclinical and clinical studies will enhance our ability to prevent and treat brain metastases.
Asunto(s)
Neoplasias Encefálicas , Melanoma , Radiocirugia , Neoplasias Encefálicas/tratamiento farmacológico , Humanos , Inmunoterapia/métodos , Incidencia , Melanoma/patología , Pronóstico , Radiocirugia/métodos , Estudios Retrospectivos , Microambiente TumoralRESUMEN
Glucocorticoid (GC) signaling varies among individuals, and this variation may relate to individual differences in health outcomes. To determine if and which aspects of signaling (basal, circadian, integrative, or reactivity) are associated with specific health outcomes, we reviewed recent studies that relate GCs to health outcomes. We identified papers through PubMed and reviewed 100 original research articles related to mental health, cardiovascular health, cancer, diabetes, obesity, pulmonary health, sleep, and fitness. Many studies reported elevated GC secretion associated with worse health, but this was only particularly true for integrative GC measures. On the other hand, accentuated cortisol awakening response and a steeper circadian rhythm were both associated with positive health outcomes. Overall, relationships between GC secretion and health outcomes were relatively weak. This systematic review of relationships between GC metrics and health outcomes highlights the importance of careful consideration when selecting methods to measure GC regulation in health research.
Asunto(s)
Susceptibilidad a Enfermedades , Glucocorticoides/fisiología , Animales , Ritmo Circadiano/fisiología , Femenino , Estado de Salud , Homeostasis/fisiología , Humanos , Hidrocortisona , Masculino , Salud Mental , Transducción de Señal/fisiología , Sueño/fisiología , Estrés Fisiológico/fisiología , Estrés Psicológico/fisiopatologíaRESUMEN
Chronic mild stress can lead to negative health outcomes. Frequency, duration, and intensity of acute stressors can affect health-related processes. We tested whether the temporal pattern of daily acute stressors (clustered or dispersed across the day) affects depression-related physiology. We used a rodent model to keep stressor frequency, duration, and intensity constant, and experimentally manipulated the temporal pattern of acute stressors delivered during the active phase of the day. Adult male Sprague-Dawley rats were exposed to one of three chronic mild stress groups: Clustered: stressors that occurred within 1 hour of each other (n = 21), Dispersed: stressors that were spread out across the active phase (n = 21), and Control: no stressors presented (n = 21). Acute mild stressors included noise, strobe lights, novel cage, cage tilt, wet bedding, and water immersion. Depression-related outcomes included: sucrose preference, body weight, circulating glucocorticoid (corticosterone) concentration after a novel acute stressor and during basal morning and evening times, and endotoxin-induced circulating interleukin-6 concentrations. Compared to control rats, those in the Clustered group gained less weight, consumed less sucrose, had a blunted acute corticosterone response, and an accentuated acute interleukin-6 response. Rats in the Dispersed group had an attenuated corticosterone decline during the active period and after an acute stressor compared to the Control group. During a chronic mild stress experience, the temporal distribution of daily acute stressors affected health-related physiologic processes. Regular exposure to daily stressors in rapid succession may predict more depression-related symptoms, whereas exposure to stressors dispersed throughout the day may predict diminished glucocorticoid negative feedback.
Asunto(s)
Corticosterona/sangre , Estrés Fisiológico/fisiología , Estrés Psicológico/fisiopatología , Animales , Peso Corporal/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/sangre , Factores de TiempoRESUMEN
This study examined the effect of limited bedding and nesting (LBN) stress on postpartum anhedonia, maternal behaviors, anxiety-like behaviors, and neuroendocrine and neuroimmune function as a potential model of postpartum depression. Dams underwent sucrose preference tests prior to breeding, during gestation and again postpartum, to examine the potential onset of anhedonia. On embryonic day 19, dams were placed into either a LBN or control housing condition. Contrary to our predictions, LBN stress had no effect on postpartum sucrose preference. We also found no effect of LBN condition on fecal estradiol or corticosterone levels, both of which increased at birth and decreased postpartum. Regardless of housing conditions, approximately 40% of new mothers exhibited a decrease in sucrose preference, while others show no change, suggesting an individual susceptibility to postpartum anhedonia. In a separate cohort of LBN and control dams, we measured pup retrieval, hoarding behavior, elevated plus maze (EPM), and marble burying. LBN dams exhibited increased anxiety, associated with decreased time spent in the open arms of the EPM. We also measured a significant increase in IL-6 expression in the dorsal hippocampus and medial prefrontal cortex of postpartum dams compared to nonpregnant dams. These findings suggest that while LBN stress has effects on anxiety and maternal care, it does not induce postpartum anhedonia. Rather, there are inherent differences in susceptibility to anhedonia in individual dams, and future studies should be conducted to better understand individual vulnerability and resilience to postpartum anhedonia.
Asunto(s)
Anhedonia , Depresión Posparto , Femenino , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Periodo Posparto , Sacarosa/farmacología , Estrés PsicológicoRESUMEN
BACKGROUND: Immune checkpoint inhibitors (ICIs) have dramatically improved survival in patients with cancer but are often accompanied by severe immune-related adverse events (irAEs), which can sometimes be irreversible. Insulin-dependent diabetes is a rare, but life-altering irAE. Our purpose was to determine whether recurrent somatic or germline mutations are observed in patients who develop insulin-dependent diabetes as an irAE. METHODS: We performed RNA and whole exome sequencing on tumors from 13 patients who developed diabetes due to ICI exposure (ICI-induced diabetes mellitus, ICI-DM) compared with control patients who did not develop diabetes. RESULTS: In tumors from ICI-DM patients, we did not find differences in expression of conventional type 1 diabetes autoantigens, but we did observe significant overexpression of ORM1, PLG, and G6PC, all of which have been implicated in type 1 diabetes or are related to pancreas and islet cell function. Interestingly, we observed a missense mutation in NLRC5 in tumors of 9 of the 13 ICI-DM patients that was not observed in the control patients treated with the same drugs for the same cancers. Germline DNA from the ICI-DM patients was sequenced; all NLRC5 mutations were germline. The prevalence of NLRC5 germline variants was significantly greater than the general population (p=5.98×10-6). Although NLRC5 is implicated in development of type 1 diabetes, germline NLRC5 mutations were not found in public databases from patients with type 1 diabetes, suggesting a different mechanism of insulin-dependent diabetes in immunotherapy-treated patients with cancer. CONCLUSIONS: Validation of the NLRC5 mutation as a potential predictive biomarker is warranted, as it might improve patient selection for treatment regimens. Furthermore, this genetic alteration suggests potential mechanisms of islet cell destruction in the setting of checkpoint inhibitor therapy.
Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Neoplasias , Humanos , Mutación de Línea Germinal , Inhibidores de Puntos de Control Inmunológico , Células Germinativas , Péptidos y Proteínas de Señalización IntracelularRESUMEN
The opioid epidemic remains a significant healthcare problem and is attributable to over 100,000 deaths per year. Poor sleep increases sensitivity to pain, impulsivity, inattention, and negative affect, all of which might perpetuate drug use. Opioid users have disrupted sleep during drug use and withdrawal and report poor sleep as a reason for relapse. However, preclinical studies investigating the relationship between sleep loss and substance use and the associated underlying neurobiological mechanisms of potential interactions are lacking. One of the most common forms of sleep loss in modern society is chronic short sleep (CSS) (<7 h/nightly for adults). Here, we used an established model of CSS to investigate the influence of disrupted sleep on opioid reward in male mice. The CSS paradigm did not increase corticosterone levels or depressive-like behavior after a single sleep deprivation session but did increase expression of Iba1, which typically reflects microglial activation, in the hypothalamus after 4 weeks of CSS. Rested control mice developed a morphine preference in a 2-bottle choice test, while mice exposed to CSS did not develop a morphine preference. Both groups demonstrated morphine conditioned place preference (mCPP), but there were no differences in conditioned preference between rested and CSS mice. Taken together, our results show that recovery sleep after chronic sleep disruption lessens voluntary opioid intake, without impacting conditioned reward associated with morphine.
RESUMEN
The field of psychoneuroimmunology has advanced the understanding of the relationship between immunology and mental health. More work can be done to advance the field by investigating the connection between internalizing disorders and persistent airway inflammation from asthma and air pollution exposure. Asthma is a prominent airway condition that affects about 10% of developing youth and 7.7% of adults in the United States. People who develop with asthma are at three times increased risk to develop internalizing disorders, namely anxiety and depression, compared to people who do not have asthma while developing. Interestingly, sex differences also exist in asthma prevalence and internalizing disorder development that differ based on age. Exposure to air pollution also is associated with increased asthma and internalizing disorder diagnoses. New perspectives of how chronic inflammation affects the brain could provide more understanding into internalizing disorder development. This review on how asthma and air pollution cause chronic airway inflammation details recent preclinical and clinical research that begins to highlight potential mechanisms that drive comorbidity with internalizing disorder symptoms. These findings provide a foundation for future studies to identify therapies that can simultaneously treat asthma and internalizing disorders, thus potentially decreasing mental health diagnoses in asthma patients.
RESUMEN
RATIONALE: Allergic asthma, typically controlled with inhaled corticosteroids (ICS), is the leading chronic health condition for youth under 18 years of age. During this peri-adolescent period, significant brain maturation occurs. Prior studies indicate that both chronic inflammation and corticosteroid medications increase risk for developing an internalizing disorder like anxiety. OBJECTIVES: To determine if chronic ICS treatments exacerbate or alleviate anxiety symptoms associated with developmental allergic asthma, we used a mouse model to isolate the influence of ICS (fluticasone propionate, FLU) vs. airway inflammation (induced with house dust mite extract, HDM). METHODS: During development, male and female BALB/cJ mice were repeatedly exposed to HDM or saline plus one of four FLU doses (none/vehicle, low, moderate, or high). In adulthood, we assessed lung inflammation, circulating and excreted corticosteroids, anxiety-like behavior, and gene expression in stress and emotion regulation brain regions. RESULTS: FLU treatment decreased body weight and anxiety-like behavior and increased fecal corticosterone metabolite concentrations and Crhr2 gene expression in ventral hippocampus. FLU effects were only observed in saline/non-HDM-exposed mice, and the FLU doses used did not significantly decrease HDM-induced airway inflammation. Females had greater serum and fecal corticosterone concentrations, less anxiety-like behavior, and lower Crhr1 gene expression in ventral hippocampus and prefrontal cortex than males. CONCLUSIONS: These findings suggest that steroid medications for youth with allergic asthma may not exacerbate anxiety-related symptoms, and that they should be avoided in children/adolescents without a health condition. The results are informative to future work on the use of corticosteroid medications during childhood or adolescent development.
Asunto(s)
Corticoesteroides/efectos adversos , Envejecimiento/efectos de los fármacos , Ansiedad , Asma/tratamiento farmacológico , Fluticasona/efectos adversos , Administración por Inhalación , Corticoesteroides/administración & dosificación , Corticoesteroides/uso terapéutico , Envejecimiento/inmunología , Envejecimiento/psicología , Alérgenos/inmunología , Animales , Ansiedad/inducido químicamente , Ansiedad/inmunología , Ansiedad/psicología , Asma/inmunología , Asma/psicología , Modelos Animales de Enfermedad , Femenino , Fluticasona/administración & dosificación , Fluticasona/uso terapéutico , Humanos , Inflamación , Masculino , Ratones , Ratones Endogámicos BALB C , Pyroglyphidae/inmunologíaRESUMEN
Deaths related to opioid use have skyrocketed in the United States, leading to a public health epidemic. Research has shown that both biological (genes) and environmental (stress) precursors are linked to opioid use. In particular, stress during adolescence-a critical period of frontal lobe development-influences the likelihood of abusing drugs. However, little is known about the biological mechanisms through which adolescent stress leads to long-term risk of opioid use, or whether genetic background moderates this response. Male and female C57BL/6J and BALB/cJ mice were exposed to chronic variable social stress (CVSS) or control conditions throughout adolescence and then tested for morphine locomotor sensitization or morphine consumption in adulthood. To examine possible mechanisms that underlie stress-induced changes in morphine behaviors, we assessed physiological changes in response to acute stress exposure and prefrontal cortex (PFC) miRNA gene expression. Adolescent stress did not influence morphine sensitization or consumption in BALB/cJ animals, and there was limited evidence of stress effects in female C57BL/6J mice. In contrast, male C57BL/6J mice exposed to adolescent CVSS had blunted morphine sensitization compared to control animals; no differences were observed in the acute locomotor response to morphine administration or morphine consumption. Physiologically, C57BL/6J mice exposed to CVSS had an attenuated corticosterone recovery following an acute stressor and downregulation of twelve miRNA in the PFC compared to control mice. The specificity of the effects for C57BL/6J vs. BALB/cJ mice provides evidence of a gene-environment interaction influencing opioid behaviors. However, this conclusion is dampened by limited locomotor sensitization observed in BALB/cJ mice. It remains possible that results may differ to other doses of morphine or other behavioral responses. Long-term differences in stress reactivity or miRNA expression in C57BL/6J mice suggests two possible biological mechanisms to evaluate in future research.
RESUMEN
Asthma is highly comorbid with anxiety in youth. We investigated the hypothalamic-pituitary-adrenal (HPA) axis and microglia as mechanisms underlying asthma and anxiety comorbidity. We induced asthma symptoms in developing BALB/cJ mice with house dust mite (HDM) for airway inflammation and methacholine (MCH) for bronchoconstriction. On the last day of exposure, we analyzed samples at six timepoints. Lung IL-5 and IL-1ß expression peaked 4 h after final HDM exposure. Circulating corticosterone was blunted in a sex- and treatment-specific temporal pattern. Hippocampal IL-1ß expression and microglial area were marginally increased 24 h after MCH exposure. These results provide a foundation for further work investigating asthma-anxiety mechanisms.
RESUMEN
Early-life infection has been shown to have profound effects on the brain and behavior across the lifespan, a phenomenon termed "early-life programming". Indeed, many neuropsychiatric disorders begin or have their origins early in life and have been linked to early-life immune activation (e.g. autism, ADHD, and schizophrenia). Furthermore, many of these disorders show a robust sex bias, with males having a higher risk of developing early-onset neurodevelopmental disorders. The concept of early-life programming is now well established, however, it is still unclear how such effects are initiated and then maintained across time to produce such a phenomenon. To begin to address this question, we examined changes in microglia, the immune cells of the brain, and peripheral immune cells in the hours immediately following early-life infection in male and female rats. We found that males showed a significant decrease in BDNF expression and females showed a significant increase in IL-6 expression in the cerebellum following E.coli infection on postnatal day 4; however, for most cytokines examined in the brain and in the periphery we were unable to identify any sex differences in the immune response, at least at the time points examined. Instead, neonatal infection with E.coli increased the expression of a number of cytokines in the brain of both males and females similarly including TNF-α, IL-1ß, and CD11b (a marker of microglia activation) in the hippocampus and, in the spleen, TNF-α and IL-1ß. We also found that protein levels of GRO-KC, MIP-1a, MCP1, IP-10, TNF-α, and IL-10 were elevated 8-hours postinfection, but this response was resolved by 24-hours. Lastly, we found that males have more thin microglia than females on P5, however, neonatal infection had no effect on any of the microglia morphologies we examined. These data show that sex differences in the acute immune response to neonatal infection are likely gene, region, and even time dependent. Future research should consider these factors in order to develop a comprehensive understanding of the immune response in males and females as these changes are likely the initiating agents that lead to the long-term, and often sex-specific, effects of early-life infection.
Asunto(s)
Cerebelo/inmunología , Infecciones por Escherichia coli/inmunología , Hipocampo/inmunología , Microglía/inmunología , Caracteres Sexuales , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/inmunología , Cerebelo/microbiología , Femenino , Hipocampo/microbiología , Inflamación/sangre , Inflamación/inmunología , Inflamación/microbiología , Mediadores de Inflamación/sangre , Mediadores de Inflamación/inmunología , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Masculino , Microglía/microbiología , Fenotipo , Ratas Sprague-DawleyRESUMEN
In developing youth, allergic asthma is the most common chronic condition, with 9%-10% of youth affected. Asthma onset during childhood and adolescence is further associated with other health issues, particularly psychiatric conditions. To understand causal mechanisms by which developmental asthma may lead to altered behavior, brain and health trajectories, we developed a mouse model of developmental allergic asthma. In the current study, we tested for potential long-term effects of developmental asthma on adult lung function and behavior and brain gene expression associated with emotion and stress regulation. We manipulated airway inflammation (AI) and methacholine (MCH)-induced bronchospasm (resulting in labored breathing, LB) in young male and female BALB/cJ mice and measured adult outcomes 3 months after final asthma manipulations. Results indicated that allergen exposure, used to cause AI, and which ended on post-natal day 56 (P56), led to persistent lung AI, mucus buildup and gene expression related to allergic asthma 3 months after final allergen exposure. In addition, at this same age, early allergen exposure led to altered brain gene expression related to stress regulation (prefrontal corticotropin releasing hormone receptor 1, Crhr1 and hippocampal glucocorticoid receptor, GR) and serotonin function (brainstem serotonin transporter, SERT). On the other hand, LB events during development led to altered anxiety-related behavior. Importantly, sex and pre-asthma fear-related behavior (ultrasonic vocalization, USV rates) modulated these adult outcomes. Asthma that develops during childhood/adolescence may have long-term impacts on emotion and stress regulation mechanisms, and these influences may be moderated by sex and pre-asthma temperament.
RESUMEN
Early-life stress is a risk factor for comorbid anxiety and nicotine use. Because little is known about the factors underlying this comorbidity, we investigated the effects of adolescent stress on anxiety-like behavior and nicotine responses within individual animals. Adolescent male and female C57BL/6J mice were exposed to chronic variable social stress (CVSS; repeated cycles of social isolationâ¯+â¯social reorganization) or control conditions from postnatal days (PND) 25-59. Anxiety-like behavior and social avoidance were measured in the elevated plus-maze (PND 61-65) and social approach-avoidance test (Experiment 1: PND 140-144; Experiment 2: 95-97), respectively. Acute nicotine-induced locomotor, hypothermic, corticosterone responses, (Experiment 1: PND 56-59; Experiment 2: PND 65-70) and voluntary oral nicotine consumption (Experiment 1: PND 116-135; Experiment 2: 73-92) were also examined. Finally, we assessed prefrontal cortex (PFC) and nucleus accumbens (NAC) synaptic transmission (PND 64-80); brain regions that are implicated in anxiety and addiction. Mice exposed to adolescent CVSS displayed increased anxiety-like behavior relative to controls. Further, CVSS altered synaptic excitability in PFC and NAC neurons in a sex-specific manner. For males, CVSS decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents in the PFC and NAC, respectively. In females, CVSS decreased the amplitude of spontaneous inhibitory postsynaptic currents in the NAC. Adolescent CVSS did not affect social avoidance or nicotine responses and anxiety-like behavior was not reliably associated with nicotine responses within individual animals. Taken together, complex interactions between PFC and NAC function may contribute to adolescent stress-induced anxiety-like behavior without influencing nicotine responses.
Asunto(s)
Ansiedad/fisiopatología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Caracteres Sexuales , Estrés Psicológico/fisiopatología , Transmisión Sináptica/fisiología , Animales , Ansiedad/etiología , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Femenino , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Distribución Aleatoria , Maduración Sexual , Conducta Social , Transmisión Sináptica/efectos de los fármacos , Técnicas de Cultivo de TejidosRESUMEN
The current experiments examined the impact of early-life immune activation and a subsequent mild immune challenge with lipopolysaccharide (LPS; 25µg/kg) on hippocampal-dependent learning, proinflammatory cytokine expression in the brain, and peripheral immune function in juvenile male and female rats at P24, an age when hippocampal-dependent learning and memory first emerges. Our results indicate that neonatal infection did not produce learning deficits in the hippocampal-dependent context pre-exposure facilitation effect paradigm in juvenile males and females, contrary to what has been observed in adults. Neonatal infection produced an increase in baseline IL-1ß expression in the hippocampus (HP) and medial prefrontal cortex (mPFC) of juvenile rats. Furthermore, neonatally infected rats showed exaggerated IL-1ß expression in the HP following LPS treatment as juveniles; and juvenile females, but not males, showed exaggerated IL-1ß expression in the mPFC following LPS treatment. Neonatal infection attenuated the production of IL-6 expression following LPS treatment in both the brain and the spleen, and neonatal infection decreased the numbers of circulating white blood cells in juvenile males and females, an effect that was further exacerbated by subsequent LPS treatment. Together, our data indicate that the consequences of neonatal infection are detectable even early in juvenile development, though we found no concomitant hippocampal-dependent learning deficits at this young age. These findings underscore the need to consider age and associated on-going neurodevelopmental processes as important factors contributing to the emergence of cognitive and behavioral disorders linked to early-life immune activation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1221-1236, 2017.
Asunto(s)
Hipocampo/crecimiento & desarrollo , Hipocampo/inmunología , Infecciones/metabolismo , Aprendizaje , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/inmunología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Aprendizaje/fisiología , Leucocitos/inmunología , Lipopolisacáridos , Masculino , Ratas Sprague-Dawley , Bazo/crecimiento & desarrollo , Bazo/inmunologíaRESUMEN
Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7-57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) "Airway inflammation only", allergen exposure 3 times/week, (2) "Labored breathing only", methacholine exposure once/week, and (3) "Airway inflammation+Labored breathing", allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a â¼20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a â¼30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a â¼50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations.