Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Intervalo de año de publicación
1.
Hum Genet ; 142(11): 1571-1586, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37755482

RESUMEN

CYP26B1 metabolizes retinoic acid in the developing embryo to regulate its levels. A limited number of individuals with pathogenic variants in CYP26B1 have been documented with a varied phenotypic spectrum, spanning from a severe manifestation involving skull anomalies, craniosynostosis, encephalocele, radio-humeral fusion, oligodactyly, and a narrow thorax, to a milder presentation characterized by craniosynostosis, restricted radio-humeral joint mobility, hearing loss, and intellectual disability. Here, we report two families with CYP26B1-related phenotypes and describe the data obtained from functional studies of the variants. Exome and Sanger sequencing were used for variant identification in family 1 and family 2, respectively. Family 1 reflects a mild phenotype, which includes craniofacial dysmorphism with brachycephaly (without craniosynostosis), arachnodactyly, reduced radioulnar joint movement, conductive hearing loss, learning disability-and compound heterozygous CYP26B1 variants: (p.[(Pro118Leu)];[(Arg234Gln)]) were found. In family 2, a stillborn fetus presented a lethal phenotype with spina bifida occulta, hydrocephalus, poor skeletal mineralization, synostosis, limb defects, and a synonymous homozygous variant in CYP26B1: c.1083C > A. A minigene assay revealed that the synonymous variant created a new splice site, removing part of exon 5 (p.Val361_Asp382del). Enzymatic activity was assessed using a luciferase assay, demonstrating a notable reduction in exogenous retinoic acid metabolism for the variant p.Val361_Asp382del. (~ 3.5 × decrease compared to wild-type); comparatively, the variants p.(Pro118Leu) and p.(Arg234Gln) demonstrated a partial loss of metabolism (1.7× and 2.3× reduction, respectively). A proximity-dependent biotin identification assay reaffirmed previously reported ER-resident protein interactions. Additional work into these interactions is critical to determine if CYP26B1 is involved with other biological events on the ER. Immunofluorescence assay suggests that mutant CYP26B1 is still localized in the endoplasmic reticulum. These results indicate that novel pathogenic variants in CYP26B1 result in varying levels of enzymatic activity that impact retinoic acid metabolism and relate to the distinct phenotypes observed.


Asunto(s)
Craneosinostosis , Tretinoina , Humanos , Ácido Retinoico 4-Hidroxilasa/genética , Tretinoina/metabolismo , Homocigoto , Exones , Craneosinostosis/genética
2.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564437

RESUMEN

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Asunto(s)
Chaperonas Moleculares/genética , Mutación , Osteogénesis Imperfecta/genética , Animales , Femenino , Genes Recesivos , Células HEK293 , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones , Linaje , Fenotipo , Vía de Señalización Wnt
3.
Am J Hum Genet ; 104(3): 439-453, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30773278

RESUMEN

SPONASTRIME dysplasia is a rare, recessive skeletal dysplasia characterized by short stature, facial dysmorphism, and aberrant radiographic findings of the spine and long bone metaphysis. No causative genetic alterations for SPONASTRIME dysplasia have yet been determined. Using whole-exome sequencing (WES), we identified bi-allelic TONSL mutations in 10 of 13 individuals with SPONASTRIME dysplasia. TONSL is a multi-domain scaffold protein that interacts with DNA replication and repair factors and which plays critical roles in resistance to replication stress and the maintenance of genome integrity. We show here that cellular defects in dermal fibroblasts from affected individuals are complemented by the expression of wild-type TONSL. In addition, in vitro cell-based assays and in silico analyses of TONSL structure support the pathogenicity of those TONSL variants. Intriguingly, a knock-in (KI) Tonsl mouse model leads to embryonic lethality, implying the physiological importance of TONSL. Overall, these findings indicate that genetic variants resulting in reduced function of TONSL cause SPONASTRIME dysplasia and highlight the importance of TONSL in embryonic development and postnatal growth.


Asunto(s)
Fibroblastos/patología , Genes Letales , Mutación , FN-kappa B/genética , Osteocondrodisplasias/patología , Adolescente , Adulto , Animales , Células Cultivadas , Niño , Preescolar , Daño del ADN , Dermis/metabolismo , Dermis/patología , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Ratones , Ratones Endogámicos C57BL , Osteocondrodisplasias/genética , Secuenciación del Exoma/métodos , Adulto Joven
4.
Am J Med Genet C Semin Med Genet ; 187(3): 396-408, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529350

RESUMEN

Molecular diagnosis is important to provide accurate genetic counseling of skeletal dysplasias (SD). Although next-generation sequencing (NGS) techniques are currently the preferred methods for analyzing these conditions, some of the published results have not shown a detection rate as high as it would be expected. The present study aimed to assess the diagnostic yield of targeted NGS combined with Sanger sequencing (SS) for low-coverage exons of genes of interest and exome sequencing (ES) in a series of patients with rare SD and use two patients as an example of our strategy. This study used two different in-house panels. Of 93 variants found in 88/114 (77%) patients, 57 are novel. The pathogenic variants found in the following genes: B3GALT6, PCYT1A, INPPL1, LIFR, of four patients were only detected by SS. In conclusion, the high diagnostic yield reached in the present study can be attributed to both a good selection of patients and the utilization of the SS for the insufficiently covered regions. Additionally, the two case reports-a patient with acrodysostosis related to PRKAR1A and another with ciliopathy associated with KIAA0753, add new and relevant clinical information to the current knowledge.


Asunto(s)
Disostosis , Osteocondrodisplasias , Citidililtransferasa de Colina-Fosfato , Galactosiltransferasas , Asesoramiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación del Exoma
5.
Genet Med ; 23(12): 2369-2377, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34341521

RESUMEN

PURPOSE: Pathogenic variants in GNPTAB and GNPTG, encoding different subunits of GlcNAc-1-phosphotransferase, cause mucolipidosis (ML) II, MLIII alpha/beta, and MLIII gamma. This study aimed to investigate the cellular and molecular bases underlying skeletal abnormalities in patients with MLII and MLIII. METHODS: We analyzed bone biopsies from patients with MLIII alpha/beta or MLIII gamma by undecalcified histology and histomorphometry. The skeletal status of Gnptgko and Gnptab-deficient mice was determined and complemented by biochemical analysis of primary Gnptgko bone cells. The clinical relevance of the mouse data was underscored by systematic urinary collagen crosslinks quantification in patients with MLII, MLIII alpha/beta, and MLIII gamma. RESULTS: The analysis of iliac crest biopsies revealed that bone remodeling is impaired in patients with GNPTAB-associated MLIII alpha/beta but not with GNPTG-associated MLIII gamma. Opposed to Gnptab-deficient mice, skeletal remodeling is not affected in Gnptgko mice. Most importantly, patients with variants in GNPTAB but not in GNPTG exhibited increased bone resorption. CONCLUSION: The gene-specific impact on bone remodeling in human individuals and in mice proposes distinct molecular functions of the GlcNAc-1-phosphotransferase subunits in bone cells. We therefore appeal for the necessity to classify MLIII based on genetic in addition to clinical criteria to ensure appropriate therapy.


Asunto(s)
Resorción Ósea , Mucolipidosis , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Animales , Humanos , Ratones , Mucolipidosis/genética , Mucolipidosis/patología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
6.
Am J Med Genet C Semin Med Genet ; 184(4): 986-995, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33219737

RESUMEN

Skeletal dysplasias (SD) are disturbances in growth due to defects intrinsic to the bone and/or cartilage, usually affecting multiple bones and having a progressive character. In this article, we review the state of clinical and research SD resources available in Latin America, including three specific countries (Brazil, Argentina, and Chile), that have established multidisciplinary clinics for the care of these patients. From the epidemiological point of view, the SD prevalence of 3.2 per 10,000 births from nine South American countries included in the ECLAMC network represents the most accurate estimate not just in Latin America, but worldwide. In Brazil, there are currently five groups focused on SD. The data from one of these groups including the website www.ocd.med.br, created to assist in the diagnosis of SD, are highlighted showing that telemedicine for this purpose represents a good strategy for the region. The experience of more than 30 years of the SD multidisciplinary clinic in an Argentinian Hospital is presented, evidencing a solid experience mainly in the follow-up of the most frequent SD, especially those belonging the FGFR3 group and OI. In Chile, a group with 20 years of experience presents its work with geneticists and pediatricians, focusing on diagnostic purposes and clinical management. Altogether, although SD health-care and research activities in Latin America are in their early stages, the experience in these three countries seems promising and stimulating for the region as a whole.


Asunto(s)
Osteocondrodisplasias , Argentina , Huesos , Humanos , América Latina/epidemiología , Prevalencia
7.
Am J Med Genet A ; 182(4): 681-688, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31903676

RESUMEN

The thyroid hormone receptor interactor 11 (TRIP11) gene encodes the Golgi microtubule-associated protein 210 (GMAP-210), a protein essential for the operation of the Golgi apparatus. It is known that null mutations in TRIP11 disrupt Golgi function and cause a lethal skeletal dysplasia known as achondrogenesis type 1A (ACG1A), however recently, hypomorphic mutations in that gene have been linked to odontochondrodysplasia (ODCD), a nonlethal skeletal dysplasia characterized by skeletal changes in the spine and in the metaphyseal regions, associated with dentinogenesis imperfecta. Here we present two patients reflecting the phenotypic spectrum related to different TRIP11 variants. The first is a female child with ODCD, for whom a homozygous in-frame splicing mutation in intron 9 of TRIP11 was identified. The mutation appears to lead to the expression of an alternative TRIP11 transcript, that may explain the less severe radiological alterations in ODCD. The second is a fetus with classical form of ACG1A, associated with typical molecular findings (frameshift) in exon 11 of TRIP11, both novel mutations. The two patients reported here represent the TRIP11 spectrum of skeletal dysplasia ranging from mild to lethal phenotypes, thereby enabling one to suggest a genotype-phenotype correlation in these diseases.


Asunto(s)
Acondroplasia/etiología , Proteínas del Citoesqueleto/genética , Dentinogénesis Imperfecta/patología , Mutación , Osteocondrodisplasias/patología , Acondroplasia/genética , Acondroplasia/patología , Adulto , Dentinogénesis Imperfecta/genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Osteocondrodisplasias/genética , Pronóstico
8.
Am J Med Genet A ; 173(5): 1186-1189, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28370949

RESUMEN

Since most short-rib polydactyly phenotypes are due to genes involved with biogenesis and maintenance of the primary cilium, this group of skeletal dysplasias was recently designated as ciliopathies with major skeletal involvement. Beemer-Langer syndrome or short-rib polydactyly type IV, was first described in 1983, and has, thus far, remained without a defined molecular basis. The most recent classification of the skeletal dysplasias referred to this phenotype as an as-yet unproven ciliopathy. IFT122 is a gene that encodes a protein responsible for the retrograde transport along the cilium; it has been associated with this group of skeletal dysplasias. To date, mutations in this gene were only found in Sensenbrenner syndrome. Using a panel of skeletal dysplasias genes, including 11 related to SRP, we identified biallelic mutations in IFT122 ([c.3184G>C];[c.3228dupG;c.3231_3233delCAT]) in a fetus with a typical phenotype of SRP-IV, finally confirmed that this phenotype is a ciliopathy and adding to the list of ciliopathies with major skeletal involvement.


Asunto(s)
Ciliopatías/genética , Polidactilia/genética , Proteínas/genética , Síndrome de Costilla Pequeña y Polidactilia/genética , Proteínas Adaptadoras Transductoras de Señales , Alelos , Huesos/anomalías , Huesos/fisiopatología , Ciliopatías/fisiopatología , Craneosinostosis/genética , Craneosinostosis/fisiopatología , Proteínas del Citoesqueleto , Displasia Ectodérmica/genética , Displasia Ectodérmica/fisiopatología , Feto , Humanos , Recién Nacido , Mutación , Polidactilia/fisiopatología , Síndrome de Costilla Pequeña y Polidactilia/fisiopatología
9.
Am J Med Genet A ; 173(4): 841-857, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28328129

RESUMEN

In October 2015, Zika virus (ZIKV) outbreak the Brazilian Ministry of Health (MoH). In response, the Brazilian Society of Medical Genetics established a task force (SBGM-ZETF) to study the phenotype of infants born with microcephaly due to ZIKV congenital infection and delineate the phenotypic spectrum of this newly recognized teratogen. This study was based on the clinical evaluation and neuroimaging of 83 infants born during the period from July, 2015 to March, 2016 and registered by the SBGM-ZETF. All 83 infants had significant findings on neuroimaging consistent with ZIKV congenital infection and 12 had confirmed ZIKV IgM in CSF. A recognizable phenotype of microcephaly, anomalies of the shape of skull and redundancy of the scalp consistent with the Fetal Brain Disruption Sequence (FBDS) was present in 70% of infants, but was most often subtle. In addition, features consistent with fetal immobility, ranging from dimples (30.1%), distal hand/finger contractures (20.5%), and feet malpositions (15.7%), to generalized arthrogryposis (9.6%), were present in these infants. Some cases had milder microcephaly or even a normal head circumference (HC), and other less distinctive findings. The detailed observation of the dysmorphic and neurologic features in these infants provides insight into the mechanisms and timings of the brain disruption and the sequence of developmental anomalies that may occur after prenatal infection by the ZIKV.


Asunto(s)
Brotes de Enfermedades , Enfermedades Fetales/epidemiología , Microcefalia/epidemiología , Complicaciones Infecciosas del Embarazo/epidemiología , Infección por el Virus Zika/epidemiología , Anticuerpos Antivirales/líquido cefalorraquídeo , Encéfalo/anomalías , Encéfalo/virología , Brasil/epidemiología , Femenino , Enfermedades Fetales/diagnóstico por imagen , Enfermedades Fetales/patología , Feto , Humanos , Inmunoglobulina G/líquido cefalorraquídeo , Lactante , Microcefalia/complicaciones , Microcefalia/diagnóstico por imagen , Microcefalia/patología , Neuroimagen , Embarazo , Complicaciones Infecciosas del Embarazo/diagnóstico , Complicaciones Infecciosas del Embarazo/patología , Síndrome , Virus Zika/crecimiento & desarrollo , Virus Zika/inmunología , Virus Zika/patogenicidad , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/diagnóstico por imagen , Infección por el Virus Zika/patología
10.
Prenat Diagn ; 37(5): 435-439, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28207930

RESUMEN

OBJECTIVE: The aim of this study was to quantify glycosaminoglycans (GAGs) in amniotic fluid (AF) from an MPS VII fetus compared with age-matched fetuses obtained from normal pregnancies. METHOD: Disaccharides were measured by liquid chromatography tandem mass spectrometry, compared to age-matched controls. Enzyme assay was performed in AF supernatant or cultured amniocytes. GUSB was analyzed by next generation sequencing using Ion Torrent Personal Genome Machine with a customized panel. RESULTS: No activity of ß-glucuronidase was detected in fetal cells. The pregnancy was spontaneously terminated in the third trimester. Genetic studies identified a homozygous mutation of p.N379D (c.1135A > G) in the GUSB gene. Liquid chromatography tandem mass spectrometry showed that chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate levels were markedly increased in the MPS VII AF, compared to those in age-matched control AF (dermatan sulfate, heparan sulfate, and chondroitin-6-sulfate more than 10 × than age-matched controls; chondroitin-4-sulfate and keratan sulfate more than 3 times higher). CONCLUSION: This is the first report of specific GAG analysis in AF from an MPS VII fetus, indicating that GAG elevation in AF occurs by 21 weeks of gestation and could be an additional tool for prenatal diagnosis of MPS VII and potentially other MPS types. © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Líquido Amniótico/metabolismo , Enfermedades Fetales/metabolismo , Feto/metabolismo , Glicosaminoglicanos/metabolismo , Mucopolisacaridosis VII/metabolismo , Adulto , Estudios de Casos y Controles , Femenino , Enfermedades Fetales/patología , Feto/patología , Humanos , Mucopolisacaridosis VII/embriología , Mucopolisacaridosis VII/patología , Embarazo , Regulación hacia Arriba
11.
Am J Hum Genet ; 92(1): 144-9, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23273569

RESUMEN

Opsismodysplasia (OPS) is a severe autosomal-recessive chondrodysplasia characterized by pre- and postnatal micromelia with extremely short hands and feet. The main radiological features are severe platyspondyly, squared metacarpals, delayed skeletal ossification, and metaphyseal cupping. In order to identify mutations causing OPS, a total of 16 cases (7 terminated pregnancies and 9 postnatal cases) from 10 unrelated families were included in this study. We performed exome sequencing in three cases from three unrelated families and only one gene was found to harbor mutations in all three cases: inositol polyphosphate phosphatase-like 1 (INPPL1). Screening INPPL1 in the remaining cases identified a total of 12 distinct INPPL1 mutations in the 10 families, present at the homozygote state in 7 consanguinous families and at the compound heterozygote state in the 3 remaining families. Most mutations (6/12) resulted in premature stop codons, 2/12 were splice site, and 4/12 were missense mutations located in the catalytic domain, 5-phosphatase. INPPL1 belongs to the inositol-1,4,5-trisphosphate 5-phosphatase family, a family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Our finding of INPPL1 mutations in OPS, a severe spondylodysplastic dysplasia with major growth plate disorganization, supports a key and specific role of this enzyme in endochondral ossification.


Asunto(s)
Exoma , Mutación , Osteocondrodisplasias/genética , Monoéster Fosfórico Hidrolasas/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Análisis de Secuencia de ADN/métodos , Adulto Joven
12.
MMWR Morb Mortal Wkly Rep ; 65(3): 59-62, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26820244

RESUMEN

In early 2015, an outbreak of Zika virus, a flavivirus transmitted by Aedes mosquitoes, was identified in northeast Brazil, an area where dengue virus was also circulating. By September, reports of an increase in the number of infants born with microcephaly in Zika virus-affected areas began to emerge, and Zika virus RNA was identified in the amniotic fluid of two women whose fetuses had been found to have microcephaly by prenatal ultrasound. The Brazil Ministry of Health (MoH) established a task force to investigate the possible association of microcephaly with Zika virus infection during pregnancy and a registry for incident microcephaly cases (head circumference ≥2 standard deviations [SD] below the mean for sex and gestational age at birth) and pregnancy outcomes among women suspected to have had Zika virus infection during pregnancy. Among a cohort of 35 infants with microcephaly born during August-October 2015 in eight of Brazil's 26 states and reported to the registry, the mothers of all 35 had lived in or visited Zika virus-affected areas during pregnancy, 25 (71%) infants had severe microcephaly (head circumference >3 SD below the mean for sex and gestational age), 17 (49%) had at least one neurologic abnormality, and among 27 infants who had neuroimaging studies, all had abnormalities. Tests for other congenital infections were negative. All infants had a lumbar puncture as part of the evaluation and cerebrospinal fluid (CSF) samples were sent to a reference laboratory in Brazil for Zika virus testing; results are not yet available. Further studies are needed to confirm the association of microcephaly with Zika virus infection during pregnancy and to understand any other adverse pregnancy outcomes associated with Zika virus infection. Pregnant women in Zika virus-affected areas should protect themselves from mosquito bites by using air conditioning, screens, or nets when indoors, wearing long sleeves and pants, using permethrin-treated clothing and gear, and using insect repellents when outdoors. Pregnant and lactating women can use all U.S. Environmental Protection Agency (EPA)-registered insect repellents according to the product label.


Asunto(s)
Microcefalia/epidemiología , Microcefalia/virología , Complicaciones Infecciosas del Embarazo/epidemiología , Infección por el Virus Zika/epidemiología , Brasil/epidemiología , Femenino , Humanos , Recién Nacido , Embarazo
13.
Genet Mol Biol ; 38(1): 14-20, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25983619

RESUMEN

Campomelic dysplasia (CD) is an autosomal, dominantly inherited, skeletal abnormality belonging to the subgroup of bent bone dysplasias. In addition to bowed lower limbs, CD typically includes the following: disproportionate short stature, flat face, micrognathia, cleft palate, bell-shaped thorax, and club feet. Up to three quarters of 46, XY individuals may be sex-reversed. Radiological signs include scapular and pubic hypoplasia, narrow iliac wings, spaced ischia, and bowed femora and tibiae. Lethal CD is usually due to heterozygous mutations in SOX9, a major regulator of chondrocytic development. We present a detailed clinical and molecular characterization of nine Brazilian CD patients. Infants were either stillborn (n = 2) or died shortly after birth and presented similar phenotypes. Sex-reversal was observed in one of three chromosomally male patients. Sequencing of SOX9 revealed new heterozygous mutations in seven individuals. Six patients had mutations that resulted in premature transcriptional termination, while one infant had a single-nucleotide substitution at the conserved splice-site acceptor of intron 1. No clear genotype-phenotype correlations were observed. This study highlights the diversity of SOX9 mutations leading to lethal CD, and expands the group of known genetic alterations associated with this skeletal dysplasia.

14.
medRxiv ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38826415

RESUMEN

Background: Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Discordant outcomes among dizygotic twins could be explained by genetic susceptibly or protection. Among several well-recognized threats to the developing brain, Zika is a mosquito-borne, positive-stranded RNA virus that was originally isolated in Uganda and spread to cause epidemics in Africa, Asia, and the Americas. In the Americas, the virus caused congenital Zika syndrome and a multitude of neurodevelopmental disorders. As of now, there is no preventative treatment or cure for the adverse outcomes caused by prenatal Zika infection. The Prenatal Infection and Neurodevelopmental Genetics (PING) Consortium was initiated in 2016 to identify factors modulating prenatal brain injury and postnatal neurodevelopmental outcomes for Zika and other prenatal viral infections. Methods: The Consortium has pooled information from eight multi-site studies conducted at 23 research centers in six countries to build a growing clinical and genomic data repository. This repository is being mined to search for modifiers of virally induced brain injury and developmental outcomes. Multilateral partnerships include commitments with Children's National Hospital (USA), Instituto Nacional de Salud (Colombia), the Natural History of Zika Virus Infection in Gestation program (Brazil), and Zika Instituto Fernandes Figueira (Brazil), in addition to the Centers for Disease Control and Prevention and the National Institutes of Health. Discussion: Our goal in bringing together these sets of patient data was to test the hypothesis that personal and populational genetic differences affect the severity of brain injury after a prenatal viral infection and modify neurodevelopmental outcomes. We have enrolled 4,102 mothers and 3,877 infants with 3,063 biological samples and clinical data covering over 80 phenotypic fields and 5,000 variables. There were several notable challenges in bringing together cohorts enrolled in different studies, including variability in the timepoints evaluated and the collected clinical data and biospecimens. Thus far, we have performed whole exome sequencing on 1,226 participants. Here, we present the Consortium's formation and the overarching study design. We began our investigation with prenatal Zika infection with the goal of applying this knowledge to other prenatal infections and exposures that can affect brain development.

16.
Am J Med Genet A ; 161A(12): 3078-86, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24039125

RESUMEN

Non-immune hydrops fetalis (NIHF) is a symptom caused by a heterogeneous group of conditions. Diagnostic investigations may constitute a real challenge. This study aimed to evaluate prospectively and systematically a series of NIHF cases using a research protocol expanded for studying inborn errors of metabolism (IEM) during 2 years-2010 and 2011. We also reviewed the frequency of IEM among the NIHF reported in literature. A clinical or etiopathogenic diagnosis was reached in 46 (86.8%) of the 53 studied cases. The main diagnostic groups were chromosomal anomalies (28.3%), syndromic (18.9%), isolated cardiovascular anomaly (7.5%) and congenital infection (7.5%). Metabolic causes were found in 5.7%, all lysosomal storage disorders (LSD). In seven (13.2%), no diagnosis was found in part because of incomplete evaluation. The hydrops was identified prenatally in 90.5% of cases. In 5.7% a spontaneous and complete resolution of the hydrops occurred during pregnancy. Overall mortality was 75.5%. The IEM frequency in the present study (5.7%) was higher than that usually reported. We suggest performing studies directed to IEMs if the more common causes are excluded.


Asunto(s)
Trastornos de los Cromosomas/genética , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/genética , Enfermedades por Almacenamiento Lisosomal/genética , Adulto , Aberraciones Cromosómicas , Trastornos de los Cromosomas/complicaciones , Trastornos de los Cromosomas/diagnóstico , Femenino , Humanos , Hidropesía Fetal/mortalidad , Hidropesía Fetal/fisiopatología , Recién Nacido , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Enfermedades por Almacenamiento Lisosomal/fisiopatología , Masculino , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/genética , Embarazo
17.
J Med Genet ; 49(4): 227-33, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22499340

RESUMEN

BACKGROUND: The lethal short rib polydactyly syndromes (SRP type I-IV) are characterised by notably short ribs, short limbs, polydactyly, multiple anomalies of major organs, and autosomal recessive mode of inheritance. Among them, SRP type II (Majewski; MIM 263520) is characterised by short ovoid tibiae or tibial agenesis and is radiographically closely related to SRP type IV (Beemer-Langer; MIM 269860) which is distinguished by bowed radii and ulnae and relatively well tubulated tibiae. NEK1 mutations have been recently identified in SRP type II. Double heterozygosity for mutations in both NEK1 and DYNC2H1 in one SRP type II case supported possible digenic diallelic inheritance. METHODS: The aim of this study was to screen DYNC2H1 and NEK1 in 13 SRP type II cases and seven SRP type IV cases. It was not possible to screen DYNC2H1 in two patients due to insufficient amount of DNA. RESULTS: The study identified homozygous NEK1 mutations in 5/13 SRP type II and compound heterozygous DYNC2H1 mutations in 4/12 cases. Finally, NEK1 and DYNC2H1 were excluded in 3/12 SRP type II and in all SRP type IV cases. The main difference between the mutation positive SRP type II group and the mutation negative SRP type II group was the presence of holoprosencephaly and polymycrogyria in the mutation negative group. CONCLUSION: This study confirms that NEK1 is one gene causing SRP type II but also reports mutations in DYNC2H1, expanding the phenotypic spectrum of DYNC2H1 mutations. The exclusion of NEK1 and DYNC2H1 in 3/12 SRP type II and in all SRP type IV cases further support genetic heterogeneity.


Asunto(s)
Proteínas de Ciclo Celular/genética , Dineínas Citoplasmáticas/genética , Proteínas Serina-Treonina Quinasas/genética , Síndrome de Costilla Pequeña y Polidactilia/genética , Consanguinidad , Femenino , Feto/anomalías , Estudios de Asociación Genética , Heterogeneidad Genética , Genotipo , Humanos , Masculino , Mutación , Quinasa 1 Relacionada con NIMA , Embarazo
18.
Mol Syndromol ; 13(6): 485-495, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36660027

RESUMEN

Introduction: Pathogenic variants in the SLC26A2/DTDST gene cause the following spectrum of phenotypes: achondrogenesis 1B (ACG1B), atelosteogenesis 2 (AO2), diastrophic dysplasia (DTD), and recessive-multiple epiphyseal dysplasia (rMED), the first 2 being lethal. Here, we report a cohort and a comprehensive literature review on a genotype-phenotype correlation of SLC26A2/DTDST-related disorders. Methods: The local patients were genotyped by Sanger sequencing or next-generation sequencing (NGS). We reviewed data from the literature regarding phenotype, zygosity, and genotype in parallel. Results: The local cohort enrolled 12 patients, including one with a Desbuquois-like phenotype. All but one showed biallelic mutations, however, only one allele mutated in a fetus presenting ACG1B was identified. The literature review identified 42 articles and the analyses of genotype and zygosity included the 12 local patients. Discussion: The R279W variant was the most prevalent among the local patients. It was in homozygosity (hmz) in 2 patients with rMED and in compound heterozygosity (chtz) in 9 patients. The genotype and zygosity review of all patients led to the following conclusions: DTD is the most common phenotype in Finland due to a Finnish mutation (c.727-1G>C). Outside of Finland, rMED is the most prevalent phenotype, usually associated with R279W in hmz. In contrast, DTD's genotype is usually in chtz. Despite a large number of variants (38), just 8 are recurrent (R279W, C653S, c.-26+2T>C, R178*, K575Sfs*10, V340del, G663R, T512K). The last 3 in hmz lead to lethal phenotypes. The Finnish mutation is found only in chtz outside of Finland, being associated with all 4 classical phenotypes. The p.R178* and p.K575Sfs*10 variants should be viewed as lethal mutations since both were mainly described with lethal phenotypes and were never reported in hmz. The existence of 9 patients with only one mutated allele suggests that other mutations in the other allele of these patients still need to be unveiled.

19.
J Bone Miner Res ; 38(5): 692-706, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36896612

RESUMEN

Lethal short-limb skeletal dysplasia Al-Gazali type (OMIM %601356), also called dysplastic cortical hyperostosis, Al-Gazali type, is an ultra-rare disorder previously reported in only three unrelated individuals. The genetic etiology for Al-Gazali skeletal dysplasia has up until now been unknown. Through international collaborative efforts involving seven clinical centers worldwide, a cohort of nine patients with clinical and radiographic features consistent with short-limb skeletal dysplasia Al-Gazali type was collected. The affected individuals presented with moderate intrauterine growth restriction, relative macrocephaly, hypertrichosis, large anterior fontanelle, short neck, short and stiff limbs with small hands and feet, severe brachydactyly, and generalized bone sclerosis with mild platyspondyly. Biallelic disease-causing variants in ADAMTSL2 were detected using massively parallel sequencing (MPS) and Sanger sequencing techniques. Six individuals were compound heterozygous and one individual was homozygous for pathogenic variants in ADAMTSL2. In one of the families, pathogenic variants were detected in parental samples only. Overall, this study sheds light on the genetic cause of Al-Gazali skeletal dysplasia and identifies it as a semi-lethal part of the spectrum of ADAMTSL2-related disorders. Furthermore, we highlight the importance of meticulous analysis of the pseudogene region of ADAMTSL2 where disease-causing variants might be located. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Enfermedades del Desarrollo Óseo , Deformidades Congénitas de las Extremidades , Osteocondrodisplasias , Humanos , Enfermedades del Desarrollo Óseo/genética , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/patología , Osteocondrodisplasias/genética , Huesos/patología , Homocigoto , Proteínas ADAMTS/genética
20.
Am J Hum Genet ; 85(5): 706-10, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19853239

RESUMEN

Desbuquois dysplasia is a severe condition characterized by short stature, joint laxity, scoliosis, and advanced carpal ossification with a delta phalanx. Studying nine Desbuquois families, we identified seven distinct mutations in the Calcium-Activated Nucleotidase 1 gene (CANT1), which encodes a soluble UDP-preferring nucleotidase belonging to the apyrase family. Among the seven mutations, four were nonsense mutations (Del 5' UTR and exon 1, p.P245RfsX3, p.S303AfsX20, and p.W125X), and three were missense mutations (p.R300C, p.R300H, and p.P299L) responsible for the change of conserved amino acids located in the seventh nucleotidase conserved region (NRC). The arginine substitution at position 300 was identified in five out of nine families. The specific function of CANT1 is as yet unknown, but its substrates are involved in several major signaling functions, including Ca2+ release, through activation of pyrimidinergic signaling. Importantly, using RT-PCR analysis, we observed a specific expression in chondrocytes. We also found electron-dense material within distended rough endoplasmic reticulum in the fibroblasts of Desbuquois patients. Our findings demonstrate the specific involvement of a nucleotidase in the endochondral ossification process.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Calcio/metabolismo , Mutación , Nucleotidasas/genética , Regiones no Traducidas 5' , Adolescente , Adulto , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arginina/metabolismo , Enfermedades del Desarrollo Óseo/diagnóstico por imagen , Células Cultivadas , Preescolar , Condrocitos/metabolismo , Cromosomas Humanos Par 17 , Codón sin Sentido , Consanguinidad , Retículo Endoplásmico Rugoso/ultraestructura , Exones , Resultado Fatal , Femenino , Fibroblastos/ultraestructura , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Datos de Secuencia Molecular , Mutación Missense , Núcleo Familiar , ARN Mensajero/metabolismo , Radiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA