Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioscience ; 72(7): 651-663, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35769502

RESUMEN

The bulk of research on citizen science participants is project centric, based on an assumption that volunteers experience a single project. Contrary to this assumption, survey responses (n = 3894) and digital trace data (n = 3649) from volunteers, who collectively engaged in 1126 unique projects, revealed that multiproject participation was the norm. Only 23% of volunteers were singletons (who participated in only one project). The remaining multiproject participants were split evenly between discipline specialists (39%) and discipline spanners (38% joined projects with different disciplinary topics) and unevenly between mode specialists (52%) and mode spanners (25% participated in online and offline projects). Public engagement was narrow: The multiproject participants were eight times more likely to be White and five times more likely to hold advanced degrees than the general population. We propose a volunteer-centric framework that explores how the dynamic accumulation of experiences in a project ecosystem can support broad learning objectives and inclusive citizen science.

2.
Proc Natl Acad Sci U S A ; 116(6): 1894-1901, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30718390

RESUMEN

The explosive growth in citizen science combined with a recalcitrance on the part of mainstream science to fully embrace this data collection technique demands a rigorous examination of the factors influencing data quality and project efficacy. Patterns of contributor effort and task performance have been well reviewed in online projects; however, studies of hands-on citizen science are lacking. We used a single hands-on, out-of-doors project-the Coastal Observation and Seabird Survey Team (COASST)-to quantitatively explore the relationships among participant effort, task performance, and social connectedness as a function of the demographic characteristics and interests of participants, placing these results in the context of a meta-analysis of 54 citizen science projects. Although online projects were typified by high (>90%) rates of one-off participation and low retention (<10%) past 1 y, regular COASST participants were highly likely to continue past their first survey (86%), with 54% active 1 y later. Project-wide, task performance was high (88% correct species identifications over the 31,450 carcasses and 163 species found). However, there were distinct demographic differences. Age, birding expertise, and previous citizen science experience had the greatest impact on participant persistence and performance, albeit occasionally in opposite directions. Gender and sociality were relatively inconsequential, although highly gregarious social types, i.e., "nexus people," were extremely influential at recruiting others. Our findings suggest that hands-on citizen science can produce high-quality data especially if participants persist, and that understanding the demographic data of participation could be used to maximize data quality and breadth of participation across the larger societal landscape.


Asunto(s)
Colaboración de las Masas , Aprendizaje , Ciencia , Red Social , Participación de la Comunidad , Comprensión , Exactitud de los Datos , Educación a Distancia/métodos , Humanos , Investigación , Encuestas y Cuestionarios
4.
PeerJ ; 8: e9235, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32551196

RESUMEN

BACKGROUND: Every human being carries with them a collection of microbes, a collection that is likely both unique to that person, but also dynamic as a result of significant flux with the surrounding environment. The interaction of the human microbiome (i.e., the microbes that are found directly in contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest because they serve as both a microbial source and sink for an individual, they may provide information about the microbial exposure experienced by an individual, and they can be sampled non-invasively. FINDINGS: We report here a large-scale study of the microbiome found on cell phones and shoes. Cell phones serve as a potential source and sink for skin and oral microbiome, while shoes can act as sampling devices for microbial environmental experience. Using 16S rRNA gene sequencing, we characterized the microbiome of thousands of paired sets of cell phones and shoes from individuals at sporting events, museums, and other venues around the United States. CONCLUSIONS: We place this data in the context of previous studies and demonstrate that the microbiome of phones and shoes are different. This difference is driven largely by the presence of "environmental" taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. This large dataset also contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized, even on commonplace objects.

6.
PeerJ ; 5: e4029, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29492330

RESUMEN

BACKGROUND: Modern advances in sequencing technology have enabled the census of microbial members of many natural ecosystems. Recently, attention is increasingly being paid to the microbial residents of human-made, built ecosystems, both private (homes) and public (subways, office buildings, and hospitals). Here, we report results of the characterization of the microbial ecology of a singular built environment, the International Space Station (ISS). This ISS sampling involved the collection and microbial analysis (via 16S rDNA PCR) of 15 surfaces sampled by swabs onboard the ISS. This sampling was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Learning more about the microbial inhabitants of the "buildings" in which we travel through space will take on increasing importance, as plans for human exploration continue, with the possibility of colonization of other planets and moons. RESULTS: Sterile swabs were used to sample 15 surfaces onboard the ISS. The sites sampled were designed to be analogous to samples collected for (1) the Wildlife of Our Homes project and (2) a study of cell phones and shoes that were concurrently being collected for another component of Project MERCCURI. Sequencing of the 16S rDNA genes amplified from DNA extracted from each swab was used to produce a census of the microbes present on each surface sampled. We compared the microbes found on the ISS swabs to those from both homes on Earth and data from the Human Microbiome Project. CONCLUSIONS: While significantly different from homes on Earth and the Human Microbiome Project samples analyzed here, the microbial community composition on the ISS was more similar to home surfaces than to the human microbiome samples. The ISS surfaces are species-rich with 1,036-4,294 operational taxonomic units (OTUs per sample). There was no discernible biogeography of microbes on the 15 ISS surfaces, although this may be a reflection of the small sample size we were able to obtain.

7.
PeerJ ; 4: e1842, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27019789

RESUMEN

Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA