Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioprocess Biosyst Eng ; 46(4): 515-522, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36539643

RESUMEN

Subtilisin Carlsberg (alkaline protease from Bacillus licheniformis) catalyzes the syntheses of high molecular weights (ca. 20 KDa) cationic α-poly-L-lysine and amphiphilic poly(α-L-lysine-co-L-phenylalanine) in neat organic solvent. The synthesis is conducted in liquid 1,1,1,2-tetrafluoroethane solvent, which is a hydrophobic non-toxic gas that does not deplete the ozone layer and approved for pharmaceutical applications. Solubility of substrates and adequate protease activity in this system with low water environment limits the reaction of hydrolysis of the growing peptide chains. The pressurization of this organic compressed fluid to liquid has low-pressure requirements (25 bar, 40 ºC), and its complete evaporation at atmospheric pressure after completing the reaction ensures solvent-free residues in products. The resulting polypeptides present null cytotoxicity according to MTT and NR analyses, as well as Calcein/EthD-1 assay in human cells.


Asunto(s)
Péptido Hidrolasas , Polilisina , Humanos , Fenilalanina , Péptidos , Solventes , Preparaciones Farmacéuticas , Catálisis
2.
Chemosphere ; 362: 142791, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972456

RESUMEN

To obtain fossil fuels with ultra-low S levels at friendly conditions, different V oxides formulations on alumina modified with Fe were characterized and selected to oxidize dibenzothiophene (DBT), 4-methyl DBT and 4,6-dimethyl DBT prevailing in diesel fuel. V-Fe based catalysts (5 or 10 wt% of V) were obtained by impregnation of ammonium metavanadate solutions on Fe-modified alumina, obtained by impregnation of Mohr salt on pseudoboehmite (2 wt% of Fe). The catalysts were calcined in air atmosphere, and after were partially reduced with H2 flux to obtain a mix of several oxidation states of V and Fe species, to evaluate the interaction of Fe in VOx/Al2O3 catalysts and determine its effect on the oxidation processes. The structural and optical properties, as well as surface species, were determined by SEM-EDS, TPR, XRD, Raman, ATR-FTIR, photoluminescence, UV-Vis diffuse reflectance, and XPS spectroscopy. The catalytic performance was evaluated in oxidative desulfurization (ODS) and photocatalytic ODS (PODS) processes. The experimental results showed the addition of Fe promoted the catalytic activity of both ODS and PODS reactions. ODS activities of V-Fe catalysts increase up to 7.5 times with respect to V catalysts without Fe, and the most active catalyst (V5Fer) presents a characteristic oxidation time of 50 min for 4,6-DMDBT. The PODS activity of V10Fec was like ODS activity, showing it is possible to oxidize the dibenzothiophenes under friendly conditions to obtain lower S levels. The promoting effect of Fe was due to the interaction of Fe2+ and Fe3+ with the catalytic support, favoring the distribution of surface V3+ and V4+ species. Additionally, Fe improved the optical properties of the catalysts since the bandgap energy decrease and low recombination rate of the electron-hole pair were observed. Therefore, V-Fe based catalysts are photocatalytically actives to be used in PODS processes.

3.
Materials (Basel) ; 16(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444826

RESUMEN

Composites of Ag and TiO2 nanoparticles were synthesized in situ on cotton fabrics using sonochemical and solvothermal methods achieving the successive formation of Ag-NPs and Ti-NPs directly on the fabric. The impregnated fabrics were characterized using ATR-FTIR spectroscopy; high-resolution microscopy (HREM); scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS); Raman, photoluminescence, UV-Vis, and DRS spectroscopies; and by tensile tension tests. Results showed the successful formation and impregnation of NPs on the cotton fabric, with negligible leaching of NPs after several washing cycles. The photocatalytic activity of supported NPs was assessed by the degradation of methyl blue dye (MB) under solar and UV irradiation revealing improved photocatalytic activity of the Ag-TiO2/cotton composites due to a synergy of both Ag and TiO2 nanoparticles. This behavior is attributed to a diminished electron-hole recombination effect in the Ag-TiO2/cotton samples. The biocide activity of these composites on the growth inhibition of Staphylococcus aureus (Gram+) and Escherichia coli (Gram-) was confirmed, revealing interesting possibilities for the utilization of the functionalized cotton fabric as protective cloth for medical applications.

4.
Biomater Adv ; 138: 212960, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35913230

RESUMEN

The α-l-Lysine (LL) grafting onto the enzymatic poly(gallic acid) (PGAL) produces a helicoidal brush-like antimicrobial polymer containing outer positive-charged moieties. Best results are found with ca. 16 mol% α-LL-grafting for the inhibition of gram-positive Staphylococcus aureus and gram-negative Escherichia coli strains. Membrane permeability, confocal and scanning electron microscopy studies suggest a pore-formation and translocation mechanisms by initial electrostatic interaction of positive charged polymer at the negatively charged bacterial membranes. The attained polymer displays high concentration of hemolysis (Hc) in erythrocytes, and no lymphocyte mitochondrial activity. Interestingly, PGAL-LL is not cytotoxic on human dermal fibroblast. The antioxidant activity after the LL hybridization is also demonstrated by DPPH, ORAC, FRAP and hydroxyl radical scavenging, which enhances the preservation of human cells in addition to antimicrobial for this polymer.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Estafilocócicas , Antibacterianos/farmacología , Escherichia coli , Ácido Gálico , Humanos , Lisina , Polímeros , Staphylococcus aureus
5.
Appl Nanosci ; 12(12): 4019-4032, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36124253

RESUMEN

The in-situ impregnation of two commercial cotton fabrics (lab coat and Indiolino) with TiO2 nanoparticles (TiO2-NPs) was carried out. For this, two commercial cotton fabrics were dipped in titanium isopropoxide, titanium butoxide and titanium tetrachloride solutions to the TiO2-NPs formation and in-situ TiO2-NPs impregnation on the cotton fabric surface by the sonochemical, hydrothermal and solvothermal methods, respectively. The impregnated fabrics were characterized by ATR-FTIR, SEM-EDS, Raman, UV-Vis, DRS and tension tests. The results showed the successful formation and impregnation of TiO2-NPs on both cotton fabrics. The leaching of TiO2-NPs from cotton fabrics was negligible after several washing cycles. The self-cleaning properties and antibacterial activity of TiO2-NPs functionalized cotton fabrics were assessed by photocatalytic and antibacterial tests. The photocatalytic activity was determined by the degradation of methylene blue dye under UV and solar irradiation. The materials showed good photoactivity, since MB was degraded up to 99% under solar and UV irradiations in 60 min. The bactericidal capacity of the TiO2-NPs on fabrics, evaluated in-situ by SEM, showed that Indiolino presented the best antibacterial properties against Escherichia coli and Bacillus pumilus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA