RESUMEN
BACKGROUND: Progranulin (PGRN) displays pleiotropic biological functions and has been proposed as a biomarker for metabolic diseases. We longitudinally assessed PGRN concentrations in infants born appropriate (AGA) or small for gestational age (SGA), the latter being at risk for obesity and type 2 diabetes, especially if they experience an excessive postnatal catch-up in weight and are formula-fed (FF). METHODS: The study population consisted of 183 infants who were exclusively breast-fed [(BF), AGA, n = 66; SGA, n = 40], or FF (AGA, n = 31; SGA, n = 46) over the first 4 months. Assessments included auxology, fasting glucose, insulin, IGF-1, high-molecular-weight adiponectin, PGRN and body composition (by DXA), at birth, and at age 4 and 12 months. RESULTS: PGRN levels were low at birth and unaffected by prenatal growth. PGRN increased at 4 and 12 months, although to a lesser extent in SGA infants, and was unrelated to the mode of feeding. PGRN correlated with markers of adiposity, inflammation and insulin resistance in both AGA and SGA infants, especially in those FF. CONCLUSIONS: The attenuated increase of PGRN levels in SGA infants over the first year of life, along with the association to markers of unhealthy metabolic profile, might point to a role of PGRN in future disease risks. IMPACT: Progranulin (PGRN) displays pleiotropic biological functions and has been proposed as a biomarker for metabolic diseases. In healthy infants, PGRN concentrations are low at birth and experience a significant and progressive increase up to age 12 months, which is less marked in infants born small for gestational age (SGA) and is unrelated to the mode of feeding. Circulating PGRN is related to markers of adiposity, inflammation, and insulin sensitivity, especially in formula-fed SGA infants. PGRN may play a role in the metabolic adaptations of SGA infants during early life, potentially contributing to the risk for obesity and type 2 diabetes in this population.
Asunto(s)
Diabetes Mellitus Tipo 2 , Retardo del Crecimiento Fetal , Recién Nacido Pequeño para la Edad Gestacional , Obesidad , Progranulinas , Femenino , Humanos , Lactante , Recién Nacido , Embarazo , Diabetes Mellitus Tipo 2/epidemiología , Retardo del Crecimiento Fetal/sangre , Recién Nacido Pequeño para la Edad Gestacional/sangre , Inflamación , Resistencia a la Insulina , Obesidad/epidemiología , Progranulinas/sangreRESUMEN
In recent years, brown adipose tissue (BAT) has been recognized not only as a main site of non-shivering thermogenesis in mammals, but also as an endocrine organ. BAT secretes a myriad of regulatory factors. These so-called batokines exert local autocrine and paracrine effects, as well as endocrine actions targeting tissues and organs at a distance. The endocrine batokines include peptide factors, such as fibroblast growth factor-21 (FGF21), neuregulin-4 (NRG4), phospholipid transfer protein (PLTP), interleukin-6, adiponectin and myostatin, and also lipids (lipokines; e.g., 12,13-dihydroxy-9Z-octadecenoic acid [12,13-diHOME]) and miRNAs (e.g., miR-99b). The liver, heart, and skeletal muscle are the most commonly reported targets of batokines. In response to BAT thermogenic activation, batokines such as NRG4 and PLTP are released and act to reduce hepatic steatosis and improve insulin sensitivity. Stress-induced interleukin-6-mediated signaling from BAT to liver favors hepatic glucose production through enhanced gluconeogenesis. Batokines may act on liver to induce the secretion of regulatory hepatokines (e.g. FGF21 and bile acids in response to miR-99b and PLTP, respectively), thereby resulting in a systemic expansion of BAT-originating signals. Batokines also target extrahepatic tissues: FGF21 and 12,13-diHOME are cardioprotective, whereas BAT-secreted myostatin and 12,13-diHOME influence skeletal muscle development and performance. Further research is needed to ascertain in humans the role of batokines, which have been identified mostly in experimental models. The endocrine role of BAT may explain the association between active BAT and a healthy metabolism in the human system, which is characterized by small amounts of BAT and a likely moderate BAT-mediated energy expenditure.
Asunto(s)
Tejido Adiposo Pardo , Resistencia a la Insulina , Tejido Adiposo Pardo/metabolismo , Animales , Sistema Endocrino , Metabolismo Energético/fisiología , Humanos , Termogénesis/fisiologíaRESUMEN
Fibroblast growth factor-21 (FGF21) is a hormonal regulator of metabolism; it promotes glucose oxidation and the thermogenic capacity of adipose tissues. The levels of ß-klotho (KLB), the co-receptor required for FGF21 action, are decreased in brown (BAT) and white (WAT) adipose tissues during obesity, diabetes, and lipodystrophy. Reduced ß-klotho levels have been proposed to account for FGF21 resistance in these conditions. In this study, we explored whether downregulation of ß-klotho affects metabolic regulation and the thermogenic responsiveness of adipose tissues using mice with total (KLB-KO) or partial (KLB-heterozygotes) ablation of ß-klotho. We herein show that KLB gene dosage was inversely associated with adiposity in mice. Upon cold exposure, impaired browning of subcutaneous WAT and milder alterations in BAT were associated with reduced KLB gene dosage in mice. Cultured brown and beige adipocytes from mice with total or partial ablation of the KLB gene showed reduced thermogenic responsiveness to ß3-adrenergic activation by treatment with CL316,243, indicating that these effects were cell-autonomous. Deficiency in FGF21 mimicked the KLB-reduction-induced impairment of thermogenic responsiveness in brown and beige adipocytes. These results indicate that the levels of KLB in adipose tissues determine their thermogenic capacity to respond to cold and/or adrenergic stimuli. Moreover, an autocrine action of FGF21 in brown and beige adipocytes may account for the ability of the KLB level to influence thermogenic responsiveness.NEW & NOTEWORTHY Reduced levels of KLB (the obligatory FGF21 co-receptor), as occurring in obesity and type 2 diabetes, reduce the thermogenic responsiveness of adipose tissues in cold-exposed mice. Impaired response to ß3-adrenergic activation in brown and beige adipocytes with reduced KLB occurs in a cell-autonomous manner involving an autocrine action of FGF21.
Asunto(s)
Tejido Adiposo/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas de la Membrana/fisiología , Termogénesis/genética , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Adiposidad/genética , Animales , Comunicación Autocrina/efectos de los fármacos , Comunicación Autocrina/genética , Células Cultivadas , Factores de Crecimiento de Fibroblastos/farmacología , Dosificación de Gen/fisiología , Proteínas Klotho , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Termogénesis/efectos de los fármacosRESUMEN
Chemokine (C-X-C motif) ligand-14 (CXCL14) levels are downregulated in experimental rodent models of obesity. Moreover, CXCL14 reportedly favors insulin sensitization in obese mice. Here we examined, for the first time, the role of CXCL14 in human obesity. We found that circulating levels of CXCL14 were decreased in patients with obesity and, especially, those with concomitant type-2 diabetes. CXCL14 levels were negatively associated with BMI and with indices of impaired glucose/insulin homeostasis. CXCL14 expression was decreased in subcutaneous adipose tissue from patients with obesity and type-2 diabetes. In adipose tissue, CXCL14 expression was negatively correlated with the expression of genes encoding pro-inflammatory molecules, and positively correlated with GLUT4 and adiponectin expression. In conclusion, obesity, and especially, concomitant type-2 diabetes are associated with abnormally decreased levels of CXCL14 in blood and impaired CXCL14 expression in adipose tissue. CXCL14 downregulation may be a novel biomarker of altered metabolism in obesity. CXCL14 also deserves further research as a therapeutic candidate.
Asunto(s)
Quimiocinas CXC/sangre , Diabetes Mellitus Tipo 2 , Obesidad , Tejido Adiposo/química , Tejido Adiposo/metabolismo , Quimiocinas CXC/análisis , Quimiocinas CXC/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Obesidad/sangre , Obesidad/complicaciones , Obesidad/epidemiologíaRESUMEN
Parkin is an ubiquitin-E3 ligase that acts as a key component of the cellular machinery for mitophagy. We show here that Parkin expression is reciprocally regulated in brown adipose tissue in relation to thermogenic activity. Thermogenic stimuli repress Parkin gene expression via transcriptional mechanisms that are elicited by noradrenergic and PPARα-mediated pathways that involve intracellular lipolysis in brown adipocytes. Parkin-KO mice show over-activated brown adipose tissue thermogenic activity and exhibit improved metabolic parameters, especially when fed a high-fat diet. Deacclimation, which is the return of a cold-adapted mouse to a thermoneutral temperature, dramatically induces mitophagy in brown adipocytes, with a concomitant induction of Parkin levels. We further reveal that Parkin-KO mice exhibit defects in the degradative processing of mitochondrial proteins in brown adipose tissue in response to deacclimation. These results suggest that the transcriptional control of Parkin in brown adipose tissue may contribute to modulating the mitochondrial mass and activity for adaptation to thermogenic requirements.
Asunto(s)
Tejido Adiposo Pardo/metabolismo , Plasticidad de la Célula/fisiología , Termogénesis/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Adipocitos Marrones , Animales , Dieta Alta en Grasa , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitofagia/fisiología , Transcripción Genética/fisiologíaRESUMEN
The last two decades have witnessed a shift in the consideration of white adipose tissue as a mere repository of fat to be used when food becomes scarce to a true endocrine tissue releasing regulatory signals, the so-called adipokines, to the whole body. The control of eating behavior, the peripheral insulin sensitivity, and even the development of the female reproductive system are among the physiological events controlled by adipokines. Recently, the role of brown adipose tissue in human physiology has been recognized. The metabolic role of brown adipose tissue is opposite to white fat; instead of storing fat, brown adipose tissue is a site of energy expenditure via adaptive thermogenesis. There is growing evidence that brown adipose tissue may have its own pattern of secreted hormonal factors, the so-called brown adipokines, having distinctive biological actions on the overall physiological adaptations to enhance energy expenditure.
Asunto(s)
Adipoquinas/fisiología , Tejido Adiposo/fisiología , Animales , Metabolismo Energético , Ácidos Grasos no Esterificados/metabolismo , HumanosRESUMEN
BACKGROUND & AIMS: This study examined whether the regulation of resistin and visfatin could reduce damage and improve regeneration in both steatotic and non-steatotic livers undergoing partial hepatectomy under ischemia-reperfusion, a procedure commonly applied in clinical practice to reduce bleeding. METHODS: Resistin and visfatin were pharmacologically modulated in lean and obese animals undergoing partial hepatectomy under ischemia-reperfusion. RESULTS: No evident role for these adipocytokines was observed in non-steatotic livers. However, obese animals undergoing liver surgery showed increased resistin in liver and plasma, without changes in adipose tissue, together with visfatin downregulation in liver and increment in plasma and adipose tissue. Endogenous resistin maintains low levels of visfatin in the liver by blocking its hepatic uptake from the circulation, thus regulating the visfatin detrimental effects on hepatic damage and regenerative failure. Indeed, the administration of anti-resistin antibodies increased hepatic accumulation of adipocyte-derived visfatin, exacerbating damage and regenerative failure. Interestingly, treatment with anti-visfatin antibodies protected steatotic livers, and similar results were obtained with the concomitant inhibition of resistin and visfatin. Thus, when visfatin was inhibited, the injurious effects of anti-resistin antibodies disappeared. Herein we show that upregulation of visfatin increased NAD levels in the remnant steatotic liver, whereas visfatin inhibition decreased them. These later observations suggest that visfatin may favour synthesis of NAD instead of DNA and induces alterations in amino acid metabolism-urea cycle and NO production, overall negatively affecting liver viability. CONCLUSIONS: Our results indicate the clinical potential of visfatin blocking-based therapies in steatotic livers undergoing partial hepatectomy with ischemia-reperfusion.
Asunto(s)
Citocinas/fisiología , Hígado Graso/fisiopatología , Regeneración Hepática/fisiología , Hígado/metabolismo , Nicotinamida Fosforribosiltransferasa/fisiología , Resistina/fisiología , Animales , Citocinas/antagonistas & inhibidores , Hepatectomía , Masculino , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Ratas , Ratas Wistar , Ratas Zucker , Reperfusión , Resistina/antagonistas & inhibidoresRESUMEN
The ability of alternative splicing mechanisms to control gene expression is increasingly being recognized as relevant for adipose tissue function. The expression of SF3B1, a key component of the SF3B complex directly involved in spliceosome formation, was previously reported to be significantly induced in brown adipose tissue under cold-induced thermogenic activation. Here, we identify that noradrenergic cAMP-mediated thermogenic stimulation increases SF3B1 expression in brown and beige adipocytes. We further show that pladienolide-B, a drug that binds SF3B1 to inhibit pre-mRNA splicing by targeting the SF3B complex, down-regulates key components of the thermogenic machinery (e.g., UCP1 gene expression), differentially alters the expression of alternative splicing-regulated transcripts encoding molecular actors involved in the oxidative metabolism of brown adipocytes (e.g., peroxisome proliferator-activated receptor-gamma co-activator-alpha [PGC-1α] and cytochrome oxidase subunit 7a genes), and impairs the respiratory activity of brown adipocytes. Similar alterations were found in brown adipocytes with siRNA-mediated knockdown of SF3B1 protein levels. Our findings collectively indicate that SF3B1 is a key factor in the appropriate thermogenic activation of differentiated brown adipocytes. This work exemplifies the importance of splicing processes in adaptive thermogenesis and suggests that pharmacological tools, such as pladienolide-B, may be used to modulate brown adipocyte thermogenic activity.
Asunto(s)
Adipocitos Marrones , Regulación de la Expresión Génica , Adipocitos Marrones/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Factores de Transcripción/metabolismo , Tejido Adiposo Pardo/metabolismo , Termogénesis/fisiología , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genéticaRESUMEN
OBJECTIVE: The study objective was to investigate the effect of cold exposure on the plasma levels of five potential human brown adipokines (chemokine ligand 14 [CXCL14], growth differentiation factor 15 [GDF15], fibroblast growth factor 21 [FGF21], interleukin 6 [IL6], and bone morphogenic protein 8b [BMP8b]) and to study whether such cold-induced effects are related to brown adipose tissue (BAT) volume, activity, or radiodensity in young humans. METHODS: Plasma levels of brown adipokines were measured before and 1 h and 2 h after starting an individualized cold exposure in 30 young adults (60% women, 21.9 ± 2.3 y; 24.9 ± 5.1 kg/m2 ). BAT volume, 18 F-fluorodeoxyglucose uptake, and radiodensity were assessed by a static positron emission tomography-computerized tomography scan after cold exposure. RESULTS: Cold exposure increased the concentration of CXCL14 (Δ2h = 0.58 ± 0.98 ng/mL; p = 0.007), GDF15 (Δ2h = 19.63 ± 46.2 pg/mL; p = 0.013), FGF21 (Δ2h = 33.72 ± 55.13 pg/mL; p = 0.003), and IL6 (Δ1h = 1.98 ± 3.56 pg/mL; p = 0.048) and reduced BMP8b (Δ2h = -37.12 ± 83.53 pg/mL; p = 0.022). The cold-induced increase in plasma FGF21 was positively associated with BAT volume (Δ2h: ß = 0.456; R2 = 0.307; p = 0.001), but not with 18 F-fluorodeoxyglucose uptake or radiodensity. None of the changes in the other studied brown adipokines was related to BAT volume, activity, or radiodensity. CONCLUSIONS: Cold exposure modulates plasma levels of several potential brown adipokines in humans, whereas only cold-induced changes in FGF21 levels are associated with BAT volume. These findings suggest that human BAT might contribute to the circulatory pool of FGF21.
Asunto(s)
Adipoquinas , Tejido Adiposo Pardo , Adulto Joven , Humanos , Femenino , Masculino , Adipoquinas/metabolismo , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Interleucina-6/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Fluorodesoxiglucosa F18/metabolismo , FríoRESUMEN
OBJECTIVE: T lymphocytes from visceral and subcutaneous white adipose tissues (vWAT and sWAT, respectively) can have opposing roles in the systemic metabolic changes associated with obesity. However, few studies have focused on this subject. Claudin-1 (CLDN1) is a protein involved canonically in tight junctions and tissue paracellular permeability. We evaluated T-lymphocyte gene expression in vWAT and sWAT and in the whole adipose depots in human samples. METHODS: A Clariom D-based transcriptomic analysis was performed on T lymphocytes magnetically separated from vWAT and sWAT from patients with obesity (Cohort 1; N = 11). Expression of candidate genes resulting from that analysis was determined in whole WAT from individuals with and without obesity (Cohort 2; patients with obesity: N = 13; patients without obesity: N = 14). RESULTS: We observed transcriptional differences between T lymphocytes from sWAT compared with vWAT. Specifically, CLDN1 expression was found to be dramatically induced in vWAT T cells relative to those isolated from sWAT in patients with obesity. CLDN1 was also induced in obesity in vWAT and its expression correlates with genes involved in inflammation, fibrosis, and adipogenesis. CONCLUSION: These results suggest that CLDN1 is a novel marker induced in obesity and differentially expressed in T lymphocytes infiltrated in human vWAT as compared with sWAT. This protein may have a crucial role in the crosstalk between T lymphocytes and other adipose tissue cells and may contribute to inflammation, fibrosis, and alter homeostasis and promote metabolic disease in obesity.
Asunto(s)
Tejido Adiposo Blanco , Claudina-1 , Obesidad , Humanos , Tejido Adiposo Blanco/metabolismo , Diferenciación Celular , Claudina-1/metabolismo , Fibrosis , Inflamación/metabolismo , Obesidad/complicaciones , Linfocitos T/metabolismoRESUMEN
White adipose tissue is recognized as both a site of energy storage and an endocrine organ that produces a myriad of endocrine factors called adipokines. Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis in mammals. The amount and activity of brown adipocytes are associated with protection against obesity and associated metabolic alterations. These effects of BAT are traditionally attributed to its capacity for the oxidation of fatty acids and glucose to sustain thermogenesis. However, recent data suggest that the beneficial effects of BAT could involve a previously unrecognized endocrine role through the release of endocrine factors. Several signaling molecules with endocrine properties have been found to be released by brown fat, especially under conditions of thermogenic activation. Moreover, experimental BAT transplantation has been shown to improve glucose tolerance and insulin sensitivity mainly by influencing hepatic and cardiac function. It has been proposed that these effects are due to the release of endocrine factors by brown fat, such as insulin-like growth factor I, interleukin-6, or fibroblast growth factor-21. Further research is needed to determine whether brown fat plays an endocrine role and, if so, to comprehensively identify which endocrine factors are released by BAT. Such research may reveal novel clues for the observed association between brown adipocyte activity and a healthy metabolic profile, and it could also enlarge a current view of potential therapeutic tools for obesity and associated metabolic diseases.
Asunto(s)
Adipoquinas/fisiología , Tejido Adiposo Pardo/fisiología , Sistema Endocrino/fisiología , Adipocitos Marrones/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Humanos , Factor I del Crecimiento Similar a la Insulina/fisiología , Interleucina-6/fisiología , Transducción de SeñalRESUMEN
The objective is to assess the circulating lipidome of children with obesity before and after lifestyle intervention and to compare the data to the circulating lipidome of adults with obesity before and after bariatric surgery. Ten pediatric (PE) and thirty adult (AD) patients with obesity were prospectively recruited at a referral single center. The PE cohort received lifestyle recommendations. The AD cohort underwent bariatric surgery. Clinical parameters and lipidome were analyzed in serum before and after six months of metabolic intervention. The abundance of phosphatidylinositols in the PE cohort and phosphatidylcholines in the AD significantly increased, while O-phosphatidylserines in the PE cohort and diacyl/triacylglycerols in the AD decreased. Fifteen lipid species were coincident in both groups after lifestyle intervention and bariatric surgery. Five species of phosphatidylinositols, sphingomyelins, and cholesteryl esters were upregulated. Eight species of diacylglycerols, glycerophosphoglycerols, glycerophosphoethanolamines, and phosphatidylcholines were downregulated. Most matching species were regulated in the same direction except for two phosphatidylinositols: PI(O-36:2) and PI(O-34:0). A specific set of lipid species regulated after bariatric surgery in adult individuals was also modulated in children undergoing lifestyle intervention, suggesting they may constitute a core circulating lipid profile signature indicative of early development of obesity and improvement after clinical interventions regardless of individual age.
Asunto(s)
Obesidad Infantil , Humanos , Adulto , Niño , Proyectos Piloto , Lipidómica , Esfingomielinas , Fosfatidilcolinas/metabolismo , FosfatidilinositolesRESUMEN
Adipose tissue from pheochromocytoma patients acquires brown fat features, making it a valuable model for studying the mechanisms that control thermogenic adipose plasticity in humans. Transcriptomic analyses revealed a massive downregulation of splicing machinery components and splicing regulatory factors in browned adipose tissue from patients, with upregulation of a few genes encoding RNA-binding proteins potentially involved in splicing regulation. These changes were also observed in cell culture models of human brown adipocyte differentiation, confirming a potential involvement of splicing in the cell-autonomous control of adipose browning. The coordinated changes in splicing are associated with a profound modification in the expression levels of splicing-driven transcript isoforms for genes involved in the specialized metabolism of brown adipocytes and those encoding master transcriptional regulators of adipose browning. Splicing control appears to be a relevant component of the coordinated gene expression changes that allow human adipose tissue to acquire a brown phenotype.
RESUMEN
Objective: Bone morphogenetic protein-8B (BMP8B) is an adipokine produced by brown adipose tissue (BAT) contributing to thermoregulation and metabolic homeostasis in rodent models. In humans, BAT activity is particularly relevant in newborns and young infants. We assessed BMP8B levels and their relationship with BAT activity and endocrine-metabolic parameters in young infants to ascertain its potentiality as biomarker in early life. Materials and Methods: BMP8B concentrations were assessed longitudinally by ELISA in a cohort of 27 girls and 23 boys at birth, and at age 4 and 12 months, together with adiposity parameters (DXA), and circulating endocrine-metabolic variables. BAT activity was measured by infrared thermography. BMP8B gene expression (qRT-PCR) was determined in BAT, white fat, and liver samples from neonatal necropsies, and in placenta and cord blood. Results: BMP8B levels were high at birth, particularly in boys (P = 0.04 vs. girls), declined progressively, and remained well above those in healthy adults and pregnant women at age 1 year (P < 0.05 and P < 0.001, respectively). Neonatal BMP8B transcript levels were higher in BAT than in white fat, liver and cord blood. Circulating BMP8B levels during the first year of life marginally correlated with bone mineral density and gains in lean mass. Conclusion: BMP8B levels are high at birth and decline progressively over the first year of life remaining above adult levels. Although changes in BMP8B concentrations overall reflect those in BAT activity during development, BMP8B levels are unlikely to be useful to predict individual variations in endocrine-metabolic status and BAT activity in healthy young infants.
RESUMEN
Lipodystrophy is a major disturbance in people living with HIV-1 (PLWH). Several systemic alterations in PLWH are reminiscent of those that occur in ageing. It is unknown whether the lipodystrophy in PLWH is the consequence of accelerated ageing in adipose tissue. We compared systemic and adipose tissue disturbances in PLWH with those in healthy elderly individuals (~80 y old). We observed similarly enhanced expression of inflammation-related genes and decreased autophagy in adipose tissues from elderly individuals and PLWH. Indications of repressed adipogenesis and mitochondrial dysfunction were found specifically in PLWH, whereas reduced telomere length and signs of senesce were specific to elderly individuals. We conclude that ageing of adipose tissue accounts only partially for the alterations in adipose tissues of PLWH.
Asunto(s)
Infecciones por VIH , Lipodistrofia , Adipogénesis/genética , Tejido Adiposo/metabolismo , Anciano , Envejecimiento , Infecciones por VIH/metabolismo , Humanos , Lipodistrofia/genéticaRESUMEN
OBJECTIVE: People living with HIV (PLWH) have an increased cardiovascular risk (CVR) owing to dyslipidemia, insulin resistance, metabolic syndrome, and HIV/combination antiretroviral therapy (cART)-associated lipodystrophy (HALS). Atherosclerosis and inflammation are related to growth differentiation factor-15 (GDF15). The relationship between metabolic disturbances, HALS, and CVR with GDF15 in PLWH is not known. RESEARCH DESIGN AND METHODS: Circulating GDF15 levels in 152 PLWH (with HALS = 60, without HALS = 43, cART-naïve = 49) and 34 healthy controls were assessed in a cross-sectional study. Correlations with lipids, glucose homeostasis, fat distribution, and CVR were explored. RESULTS: PLWH had increased circulating GDF15 levels relative to controls. The increase was the largest in cART-treated PLWH. Age, homeostatic model assessment of insulin resistance 1 (HOMA1-IR), HALS, dyslipidemia, C-reactive protein, and CVR estimated with the Framingham score correlated with GDF15 levels. The GDF15-Framingham correlation was lost after age adjustment. No correlation was found between GDF15 and the D:A:D Data Collection on Adverse Effects of Anti-HIV Drugs (D:A:D) score estimated CVR. CVR independent predictors were patient group (naïve, HALS-, and HALS+) and cumulated protease inhibitor or nucleoside reverse transcriptase inhibitor exposure. CONCLUSIONS: PLWH, especially when cART-treated, has increased GDF15 levels-this increase is associated with dyslipidemia, insulin resistance, metabolic syndrome, HALS, and inflammation-related parameters. GDF15 is unassociated with CVR when age-adjusted.
RESUMEN
CONTEXT: Brown adipose tissue (BAT) is particularly abundant in neonates, but its association with measures of adiposity and metabolic health in early infancy is poorly delineated. Besides sustaining nonshivering thermogenesis, BAT secretes brown adipokines that act on systemic metabolism. The chemokine CXCL14 has been identified as a brown adipokine in experimental studies. OBJECTIVE: To determine the relationships among BAT activity, adiposity, and circulating CXCL14 levels in the first year of life in girls and boys. METHODS: Indices of fat accretion, circulating endocrine-metabolic parameters and serum CXCL14 levels were assessed longitudinally in a cohort of infants at birth and at 4 and 12 months. BAT activity was estimated using infrared thermography only at age 12 months.The main outcome measures were weight and length Z-scores, total and abdominal fat content (by dual X-ray absorptiometry), BAT activity at the posterior cervical and supraclavicular regions, serum levels of glucose, insulin, insulin-like growth factor-I, high-molecular-weight adiponectin, and CXCL14; CXCL14 transcript levels in neonatal BAT and liver. RESULTS: Posterior cervical BAT was more active in girls than in boys (P = .02). BAT activity was negatively associated with adiposity parameters only in girls. CXCL14 levels were higher in girls than in boys at age 12 months and correlated positively with the area of active posterior cervical BAT in girls. Neonatal BAT showed high CXCL14 gene expression levels. CONCLUSION: BAT activity and the levels of CXCL14-a potential surrogate of BAT activity-are sex specific in the first year of life. Posterior cervical BAT activity associates negatively with indices of adiposity only in girls.
Asunto(s)
Tejido Adiposo Pardo/metabolismo , Adiposidad/fisiología , Absorciometría de Fotón , Quimiocinas CXC/sangre , Quimiocinas CXC/metabolismo , Femenino , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Cuello , Factores Sexuales , TermografíaRESUMEN
CONTEXT: The endocrine and immunological properties of subcutaneous vs visceral adipose tissue (sWAT and vWAT, respectively) have turned a milestone in the study of metabolic diseases. The cytokine S100A4 is increased in obesity and has a role in adipose tissue dysfunction. However, the cellular source and its potential role in hepatic damage in obesity has not been elucidated. OBJECTIVE: We aim to study the regulation of S100A4 in immune cells present in sWAT and vWAT, as well as its potential role as a circulating marker of hepatic inflammation and steatosis. DESIGN: A cohort of 60 patients with obesity and distinct metabolic status was analyzed. CD11b+ myeloid cells and T cells were isolated from sWAT and vWAT by magnetic-activating cell sorting, and RNA was obtained. S100A4 gene expression was measured, and correlation analysis with clinical data was performed. Liver biopsies were obtained from 20 patients, and S100A4 circulating levels were measured to check the link with hepatic inflammation and steatosis. RESULTS: S100A4 gene expression was strongly upregulated in sWAT- vs vWAT-infiltrated CD11b+ cells, but this modulation was not observed in T cells. S100A4 mRNA levels from sWAT (and not from vWAT) CD11b+ cells positively correlated with glycemia, triglycerides, TNF-α gene expression and proliferation markers. Finally, circulating S100A4 directly correlated with liver steatosis and hepatic inflammatory markers. CONCLUSION: Our data suggest that sWAT-infiltrated CD11b+ cells could be a major source of S100A4 in obesity. Moreover, our correlations identify circulating S100A4 as a potential novel biomarker of hepatic damage and steatosis.
Asunto(s)
Tejido Adiposo Blanco/patología , Antígeno CD11b/análisis , Hígado Graso/sangre , Células Mieloides/química , Obesidad/complicaciones , Proteína de Unión al Calcio S100A4/análisis , Tejido Adiposo Blanco/química , Tejido Adiposo Blanco/metabolismo , Adulto , Anciano , Animales , Biomarcadores/análisis , Biomarcadores/sangre , Hígado Graso/etiología , Hígado Graso/patología , Femenino , Expresión Génica , Humanos , Grasa Intraabdominal/química , Grasa Intraabdominal/patología , Macrófagos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Obesidad/sangre , Obesidad/metabolismo , Células RAW 264.7 , Proteína de Unión al Calcio S100A4/sangre , Proteína de Unión al Calcio S100A4/genética , Grasa Subcutánea/química , Grasa Subcutánea/patologíaRESUMEN
BACKGROUND: Recreational marathon runners face strong physiological challenges. Assessment of potential biomarkers for the biological responses of runners will help to discriminate individual race responsiveness and their physiological consequences. This study sought to analyze the changes in the plasma levels of GDF15 and FGF21, novel endocrine factors related to metabolic stress, in runners following the strenuous exercise of a marathon race. METHODS: Blood samples were obtained from eighteen male runners (mean ±SD, age: 41.7 ±5.0 years, BMI: 23.6 ± 1.8) 48 h before, immediately after, and 48 h after a marathon race, and from age-matched sedentary individuals. The level of GDF15, FGF21, and 38 additional biochemical and hematological parameters were determined. RESULTS: The basal levels of GDF15 and FGF21 did not differ between runners before the race and sedentary individuals. Significant increases in the mean levels of GDF15 (4.2-fold) and FGF21 (20-fold) were found in runners immediately after the race. The magnitudes of these increases differed markedly among individuals and did not correlate with each other. The GDF15 and FGF21 levels had returned to the basal level 48 h post-race. The post-race value of GDF15 (but not FGF21) correlated positively with increased total white cell count (r = 0.50, P = 0.01) and neutrophilia (r = 0.10, P = 0.01). CONCLUSION: GDF15 and FGF21 are transiently increased in runners following a marathon race. The induction of GDF15 levels is associated with alterations in circulating immune cells levels.
RESUMEN
OBJECTIVE: CXCL14 (C-X-C motif chemokine ligand-14) is a chemokine released by active brown fat, showing protective effects against insulin resistance in experimental models. Polycystic ovary syndrome (PCOS) in adolescent girls is usually related to hepato-visceral fat excess and insulin resistance, and associates with comorbidities such as type 2 diabetes. Treatment with a low-dose combination of one antiandrogen and antimineralocorticoid drug (spironolactone) and two insulin sensitizers (pioglitazone/metformin) (SPIOMET) is particularly effective in improving these metabolic derangements. Adipose tissue may be involved in the metabolic alterations of PCOS, and it is a likely target of therapeutic action. We investigated the alterations in CXCL14 levels and the effects of drugs composing SPIOMET treatment on CXCL14 in human adipocytes. RESEARCH DESIGN AND METHODS: We studied 51 adolescent patients with PCOS and 21 age-matched healthy controls. Thirty-one adolescent patients with PCOS under SPIOMET or oral contraception-based treatment were also studied. For studies in vitro, Simpson Golabi Behmel Syndrome (SGBS) adipose cells were used. Gene expression for CXCL14 and other genes was quantified using quantitative real-time PCR. The levels of CXCL14 and adipokines in serum and cell culture media were determined by ELISA. RESULTS: Serum CXCL14 levels are reduced in patients with PCOS. One-year SPIOMET treatment normalized CXCL14 concentrations and improved the metabolic status of patients with PCOS. Pioglitazone induced CXCL14 expression in differentiating human SGBS adipocytes, in parallel with the induction of marker genes of brown adipogenesis. Spironolactone induced CXCL14 expression and release in differentiated human adipocytes. CONCLUSION: Insulin sensitization with SPIOMET normalizes the abnormally low levels of CXCL14 in girls with PCOS. This is consistent with the effects of pioglitazone and spironolactone inducing CXCL14 expression and promoting a brown-like phenotype in adipocytes. CXCL14 may be a novel biomarker for PCOS as well as a potential mediator of the beneficial effects of the SPIOMET combination and may hold promise as a therapeutic modulator of the disorder. TRIAL REGISTRATION NUMBERS: ISRCTN29234515 and ISCRCTN11062950.