Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 146(1): 148-63, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729786

RESUMEN

Mechanotransduction is a key determinant of tissue homeostasis and tumor progression. It is driven by intercellular adhesions, cell contractility, and forces generated within the microenvironment and is dependent on extracellular matrix composition, organization, and compliance. We show that caveolin-1 (Cav1) favors cell elongation in three-dimensional cultures and promotes Rho- and force-dependent contraction, matrix alignment, and microenvironment stiffening through regulation of p190RhoGAP. In turn, microenvironment remodeling by Cav1 fibroblasts forces cell elongation. Cav1-deficient mice have disorganized stromal tissue architecture. Stroma associated with human carcinomas and melanoma metastases is enriched in Cav1-expressing carcinoma-associated fibroblasts (CAFs). Cav1 expression in breast CAFs correlates with low survival, and Cav1 depletion in CAFs decreases CAF contractility. Consistently, fibroblast expression of Cav1, through p190RhoGAP regulation, favors directional migration and invasiveness of carcinoma cells in vitro. In vivo, stromal Cav1 remodels peri- and intratumoral microenvironments to facilitate tumor invasion, correlating with increased metastatic potency. Thus, Cav1 modulates tissue responses through force-dependent architectural regulation of the microenvironment.


Asunto(s)
Caveolina 1/metabolismo , Metástasis de la Neoplasia/patología , Neoplasias/patología , Animales , Movimiento Celular , Fibroblastos/patología , Humanos , Melanoma/patología , Ratones , Ratones Noqueados
2.
J Sci Food Agric ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041432

RESUMEN

BACKGROUND: Hydroxytyrosol (HT) is a bioactive compound present in a limited number of foods such as wines, olives, and olive oils. During alcoholic fermentation, yeast converts aromatic amino acids into higher alcohols such as tyrosol, which can undergo hydroxylation into HT. The aim of this study was to validate an analytical method using ultra performance liquid chromatography coupled with mass spectrometry (UPLC/MS-MS) to quantify HT and its precursors (tyrosine, hydroxyphenylpyruvic acid, hydroxyphenylacetaldehyde, 4-hydroxyphenylacetic acid, and tyrosol) in wines. Their occurrence was evaluated in a total of 108 commercial Spanish wine samples. RESULTS: The validated method simultaneously determined both HT and its precursors, with adequate limits of detection between 0.065 and 21.86 ng mL-1 and quantification limits between 0.199 and 66.27 ng mL-1 in a 5 min run. The concentration of HT in red wines was significantly higher (0.12-2.24 mg L-1) than in white wines (0.01-1.27 mg L-1). The higher the alcoholic degree, the higher was the content of HT. The bioactive 4-hydroxyphenylacetic acid was identified in Spanish wines for the first time at 3.90-127.47 mg L-1, being present in all the samples. CONCLUSION: The highest HT concentrations were found in red wines and in wines with higher ethanol content. These data are useful for a further estimation of the intake of these bioactive compounds and to enlarge knowledge on chemical composition of wines. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Int J Food Microbiol ; 421: 110788, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38905810

RESUMEN

During alcoholic fermentation, Saccharomyces cerevisiae synthesizes different compounds, which are crucial for product quality: volatile compounds with sensory impact, and bioactive compounds such as melatonin (MEL) and hydroxytyrosol (HT), linked to health benefits. As many of these compounds are related with yeast's nitrogen metabolism, their production have been studied in four different commercial strains with different nitrogen requirement (Red Fruit, Uvaferm VRB, Lalvin Rhone 2323 and Lalvin QA23) being, Uvaferm UVR the higher nitrogen demander strain. All strains produced the secondary metabolites, notably Uvaferm UVR produced the highest HT concentration, despite its low growth. Uvaferm UVR emerged also as a significant producer of MEL, indicating a potential role in fermentation related stress. Moreover, Uvaferm UVR shows the highest total concentrations of volatile compounds. Multivariate analysis revealed distinct clustering based on nitrogen requirements of the strains, highlighting the strain-dependent metabolic responses.


Asunto(s)
Fermentación , Melatonina , Nitrógeno , Alcohol Feniletílico , Saccharomyces cerevisiae , Vino , Saccharomyces cerevisiae/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/metabolismo , Vino/microbiología , Vino/análisis , Nitrógeno/metabolismo , Melatonina/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Metabolismo Secundario , Odorantes/análisis
4.
J Cell Sci ; 124(Pt 19): 3189-97, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21940791

RESUMEN

Anoikis (or cell-detachment-induced apoptosis) is a self-defense strategy that organisms use to eliminate 'misplaced' cells, i.e. cells that are in an inappropriate location. Occasionally, detached or misplaced cells can overcome anoikis and survive for a certain period of time in the absence of the correct signals from the extracellular matrix (ECM). If cells are able to adapt to their new environment, then they have probably become anchorage-independent, which is one of the hallmarks of cancer cells. Anoikis resistance and anchorage-independency allow tumor cells to expand and invade adjacent tissues, and to disseminate through the body, giving rise to metastasis. Thus, overcoming anoikis is a crucial step in a series of changes that a tumor cell undergoes during malignant transformation. Tumor cells have developed a variety of strategies to bypass or overcome anoikis. Some strategies consist of adaptive cellular changes that allow the cells to behave as they would in the correct environment, so that induction of anoikis is aborted. Other strategies aim to counteract the negative effects of anoikis induction by hyperactivating survival and proliferative cascades. The recently discovered processes of autophagy and entosis also highlight the contribution of these mechanisms to rendering the cells in a dormant state until they receive a signal initiated at the ECM, thereby circumventing anoikis. In all situations, the final outcome is the ability of the tumor to grow and metastasize. A better understanding of the mechanisms underlying anoikis resistance could help to counteract tumor progression and prevent metastasis formation.


Asunto(s)
Anoicis , Adhesión Celular , Transformación Celular Neoplásica , Neoplasias/patología , Animales , Entosis , Matriz Extracelular/metabolismo , Humanos , Integrinas/fisiología , Metástasis de la Neoplasia , Neoplasias/fisiopatología , Estrés Oxidativo , Proteínas Tirosina Quinasas Receptoras/fisiología , Transducción de Señal
5.
Food Chem Toxicol ; 171: 113542, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36464107

RESUMEN

The abnormal aggregation of the α-synuclein (αsyn) protein is involved in the formation of Lewy bodies in the brain of patients suffering from Parkinson disease (PD). Hydroxytyrosol (HT), a polyphenolic compound present in olives, olive oil, and wine, has been shown to inhibit aggregation and destabilise the αsyn aggregates, preventing neuronal cell death. However, very limited data have been published on the study of its metabolites. Therefore, this study investigated the capacity of the metabolites 3,4-dihydroxyphenylacetaldehyde (DOPAL), 4-hydroxy-3-methoxyphenylethanol (MOPET), and 3-methoxy-4-hydroxyphenylacetaldehyde (MOPAL) to prevent the aggregation and toxic effects of αsyn fibrils. In vitro techniques, such as Thioflavin T (ThT), Transmission Electronic Microscopy (TEM), electrophoresis, thiazolyl blue tetrazolium bromide (MTT), and Real-Time PCR (RT-PCR) were used. Our results show that among these three metabolites, DOPAL exerts the greatest effect, preventing aggregation and αsyn-induced neurotoxicity. In fact, DOPAL has the ability to completely inhibit αsyn fibril formation at low doses. Moreover, this metabolite has a potent destabilising effect on the αsyn fibrils. Concerning neuroprotection, DOPAL can counteract the toxicity induced by αsyn. The vitagene expression results show a possible relationship between the neuroprotection mechanism exhibited by DOPAL and the modulation of SIRT-2 and Hsp70.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Neuroprotección , Enfermedad de Parkinson/metabolismo
6.
Cell Death Differ ; 30(1): 37-53, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35869285

RESUMEN

Despite being frequently observed in cancer cells, chromosomal instability (CIN) and its immediate consequence, aneuploidy, trigger adverse effects on cellular homeostasis that need to be overcome by anti-stress mechanisms. As such, these safeguard responses represent a tumor-specific Achilles heel, since CIN and aneuploidy are rarely observed in normal cells. Recent data have revealed that epitranscriptomic marks catalyzed by RNA-modifying enzymes change under various stress insults. However, whether aneuploidy is associated with such RNA modifying pathways remains to be determined. Through an in silico search for aneuploidy biomarkers in cancer cells, we found TRMT61B, a mitochondrial RNA methyltransferase enzyme, to be associated with high levels of aneuploidy. Accordingly, TRMT61B protein levels are increased in tumor cell lines with an imbalanced karyotype as well as in different tumor types when compared to control tissues. Interestingly, while TRMT61B depletion induces senescence in melanoma cell lines with low levels of aneuploidy, it leads to apoptosis in cells with high levels. The therapeutic potential of these results was further validated by targeting TRMT61B in transwell and xenografts assays. We show that TRM61B depletion reduces the expression of several mitochondrial encoded proteins and limits mitochondrial function. Taken together, these results identify a new biomarker of aneuploidy in cancer cells that could potentially be used to selectively target highly aneuploid tumors.


Asunto(s)
Metiltransferasas , Neoplasias , Humanos , ARN Mitocondrial , Metiltransferasas/genética , Aneuploidia , Inestabilidad Cromosómica , ARN , Biomarcadores , Neoplasias/tratamiento farmacológico , Neoplasias/genética
7.
Pharmacol Res ; 65(6): 609-14, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22484523

RESUMEN

Wine intake affects the antioxidant enzyme activities that contribute to the overall antioxidant properties of wine. The purpose of this study is to evaluate whether alcohol-free wine has any effect on antioxidant enzymes. The study was a randomized cross-over human intervention. A low phenolic diet (LPD) was designed to prevent interference from polyphenols in other food sources. In the first period, the volunteers ate only this low phenolic diet; in the second, they ate this diet and also drank 300 mL of alcohol-free wine. The enzymes under study were: superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The activities of glutathione reductase, superoxide dismutase and catalase decreased during the LPD period and increased in the LPD+dealcoholized wine period. On the third day of intervention, significant changes were observed in glutathione reductase and superoxide dismutase activity for both intervention periods under study. Catalase activity changed significantly on the seventh day of intervention. Antioxidant enzymes modulated their activity more easily than the endogenous antioxidants, which did not undergo any changes. Our results show for the first time that the increase in the activity of the antioxidant enzymes is not due to the alcohol content in wine but to the polyphenolic composition. Therefore, alcohol-free wine could be an excellent source of antioxidants to protect people suffering from oxidative stress (cancer, diabetes, alzheimer, etc.) who should not consume alcohol.


Asunto(s)
Catalasa/sangre , Glutatión Peroxidasa/sangre , Glutatión Reductasa/sangre , Estrés Oxidativo , Superóxido Dismutasa/sangre , Vino , Adulto , Análisis de Varianza , Antioxidantes/análisis , Estudios Cruzados , Dieta , Etanol/análisis , Humanos , Polifenoles/análisis , España , Vino/análisis
8.
Foods ; 11(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35206003

RESUMEN

Angiogenesis is a key process involved in both cancer and cardiovascular diseases, the vascular endothelial growth factor (VEGF) and its VEGF receptor-2 (VEGFR-2) being the main triggers. The aim of this study was to determine the molecular mechanism underlying the potent inhibition of VEGF signaling by hydroxytyrosol (HT) metabolites and indolic compounds and establish a relation between their structure and bioactivity. Experiments involved the evaluation of their potential to inhibit VEGF on human umbilical vein endothelial cells (HUVECs) by ELISA assay and their subsequent effect on the downstream signaling pathway (PLCγ1, Akt, and endothelial nitric oxide synthetase (eNOS)) by Western blot. Respectively, 3,4-dihydroxyphenylacetaldehyde (DOPAL) (100 µM) and indole pyruvic acid (IPy) (1 mM) were capable of inhibiting VEGFR-2 activation with an IC50 value of 119 µM and 1.037 mM. The anti-angiogenic effect of DOPAL and IPy is mediated via PLCγ1. Additionally, DOPAL significantly increases eNOS phosphorylation, while IPy maintained it. These data provide for the first time evidence of the anti-angiogenic effect of DOPAL and IPy for future use as potential bioactive food ingredients.

9.
Foods ; 11(15)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35954121

RESUMEN

Hydroxytyrosol (HT) is a phenolic compound with proven biological properties present in a limited number of foods such as table olives, virgin olive oil (VOO) and wines. The present work aims to evaluate the dietary intake of HT in the European (EU) population by compiling scattered literature data on its concentration in foods. The consumption of the involved foods was estimated based on the EFSA Comprehensive European Food Consumption Database. The updated average contents of HT are as follows: 629.1, 5.2 and 2.1 µg/g for olives, olive oil and wine, respectively. The HT estimated intake in the European Union (EU) adult population falls within 0.13-6.82 mg/day/person, with table olives and wine being the main contributors. The estimated mean dietary intake of HT in EU countries is 1.97 ± 2.62 mg/day. Greece showed the highest HT intake (6.82 mg/day), while Austria presented the lowest (0.13 mg/day). Moreover, HT is an authorized novel food ingredient in the EU that can be added to different foods. Since the estimated HT intake is substantially low, the use of HT as a food ingredient seems feasible. This opens new possibilities for revalorizing waste products from olive oil and olive production which are rich HT sources.

10.
Nutrients ; 14(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35631202

RESUMEN

Promoting a healthy diet is a relevant strategy for preventing non-communicable diseases. This study aims to evaluate the impact of an innovative tool, the SAlBi educa nutrition app, in primary healthcare dietary counseling to improve dietary profiles as well as adherence to the Mediterranean diet. A multi-center randomized control trial comprising 104 participants was performed. Both control (n = 49) and intervention (n = 55) groups attended four once-weekly sessions focusing on healthy eating habits and physical activity, over one month. As well as attending the meetings, the intervention group used the app, which provides self-monitoring and tailored dietary advice based on the Mediterranean diet model. In a second intervention (one arm trial), the potential of SAlBi educa was evaluated for three months during the COVID-19 pandemic. At 4 weeks, the intervention group had significantly increased their carbohydrate intake (7.7% (95% CI: 0.16 to 15.2)) and decreased their total fat intake (-5.7% (95% CI: -10.4 to -1.15)) compared to the control group. Significant differences were also found for carbohydrates (3.5% (95% CI: -1.0 to 5.8)), total fats (-5.9% (95% CI: -8.9 to -3.0)), fruits and vegetables (266.3 g/day (95% CI: 130.0 to 402.6)), legumes (7.7g/day (95% CI: 0.2 to 15.1)), starchy foods (36.4 g/day (95% CI: 1.1 to 71.7)), red meat (-17.5 g/day (95% CI: -34.0 to -1.1)), and processed meat (-6.6 g/day (95% CI: -13.1 to -0.1)) intakes during the COVID-19 pandemic. SAlBi educa is a useful tool to support nutrition counseling in primary healthcare, including in special situations such as the COVID-19 pandemic. Trial registration: ISRCTN57186362.


Asunto(s)
COVID-19 , Dieta Mediterránea , Aplicaciones Móviles , COVID-19/prevención & control , Humanos , Nutrientes , Pandemias , Proyectos Piloto , Verduras
11.
Front Nutr ; 9: 782430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35520281

RESUMEN

In recent years, the use of applications to improve dietary habits has increased. Although numerous nutrition apps are available on the market, only few have been developed by health and nutrition professionals based on scientific evidence and subsequently tested to prove their usability. The main objective of this study was to design, develop, and evaluate the usability of a tailored nutrition application to be used to promote healthy eating habits. In order to decide app design and content, three focus groups took place with fifteen professionals from primary healthcare, nutrition, and food science and computer science, as well as expert users. For the general and feedback message design, a reference model based on the scientific literature was developed. To address the multi-perspective approach of users' and external healthcare professionals' feedback, a one-day pilot testing with potential users and healthcare professionals was conducted with four focus groups. To evaluate the relevance and potential usability of the app a 1-month pilot test was conducted in a real-life environment. A total of 42 volunteers participated in the one-day pilot testing, and 39 potential users participated in the 1-month pilot test. The SAlBi educa app developed includes an online dietary record, a self-monitoring tool to evaluate dietary patterns, general and feedback messages, and examples of traditional Mediterranean recipes. The usability study showed that volunteers think that SAlBi educa is pleasant (59%) and easy to learn to use (94%). Over 84% of the volunteers declared that the nutritional messages were clear and useful. Volunteers stated that general and tailored recommendations, as well as self-monitoring, were SAlBi educa's most motivating and useful features. SAlBi educa is an innovative, user-friendly nutritional education tool with the potential to engage and help individuals to follow dietary habits based on the Mediterranean model.

12.
Food Chem ; 127(3): 1329-34, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25214134

RESUMEN

Melatonin has recently been detected in various plants and foods. However, data regarding the food composition of melatonin are too scarce to evaluate dietary intake. This paper aims to identify melatonin unequivocally using LC-MS in a wide set of varieties of tomatoes (Lycopersicon esculentum) and strawberry (Fragariaananassa). Furthermore, a validated LC fluorescence was developed. This is the first time melatonin has been identified in Bond, Borsalina, Catalina, Gordal, Lucinda, Marbone, Myriade, Pitenza, Santonio, Perlino, Platero, and RAF varieties of tomatoes, as well as in strawberry (Fragaria ananassa): Camarosa, Candonga, Festival, and Primoris. Melatonin concentration was shown to vary greatly depending on the tomato varieties and harvests (2009, 2010), ranging from 4.11ng/g to 114.52ng/g fresh weight. However, the four varieties of strawberries collected during the two harvests showed greater similarity in melatonin (1.38-11.26ng/g fresh weight).

13.
Biochim Biophys Acta ; 1792(4): 297-308, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19419690

RESUMEN

Telomerase- and telomere length regulation in normal human tissues is still poorly understood. We show here that telomerase is expressed in the epidermis in situ independent of age but was repressed upon the passaging of keratinocytes in monolayer culture. However, when keratinocytes were grown in organotypic cultures (OTCs), telomerase was re-established, indicating that telomerase activity is not merely proliferation-associated but is regulated in a tissue context-dependent manner in human keratinocytes. While not inducible by growth factors, treatment with the histone deacetylation inhibitor FK228 restored telomerase activity in keratinocytes grown in monolayer cultures. Accordingly, CHIP analyses demonstrated an acetylated, active hTERT promoter in the epidermis in situ and in the epidermis of OTCs but a deacetylated, silenced hTERT promoter with subsequent propagation in monolayer culture suggesting that histone acetylation is part of the regulatory program to guarantee hTERT expression/telomerase activity in the epidermis. In agreement with the loss of telomerase activity, telomeres shortened during continuous propagation in monolayer culture by an average of approximately 70 base pairs (bp) per population doubling (pd). However, telomere erosion varied strongly between different keratinocyte strains and even between individual cells within the same culture, thereby arguing against a defined rate of telomere loss per replication cycle. In the epidermis in situ, as determined from early-passage keratinocytes and tissue sections from different age donors, we calculated a telomere loss of only approximately 25 bp per year. Since we determined the same rate for the non-regenerating melanocytes and dermal fibroblasts, our data suggest that in human epidermis telomerase is a protective mechanism against excessive telomere loss during the life-long regeneration.


Asunto(s)
Envejecimiento/metabolismo , Proliferación Celular , Epidermis/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Queratinocitos/enzimología , Telomerasa/metabolismo , Telómero/enzimología , Adulto , Antibióticos Antineoplásicos/farmacología , Células Cultivadas , Depsipéptidos/farmacología , Dermis/citología , Dermis/enzimología , Activación Enzimática/fisiología , Células Epidérmicas , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Humanos , Lactante , Recién Nacido , Queratinocitos/citología , Masculino , Melanocitos/citología , Melanocitos/enzimología , Factores de Tiempo
14.
Food Chem ; 314: 126222, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31981884

RESUMEN

Climate change has an impact on the chemical risks associated to wine consumption related with grape development and microbial contamination. We can classify chemical hazards in wine into two groups: those present in grapes due to agricultural practices, environmental contamination or fungal growth and those coming from fermentation and the winemaking process. The first group includes mycotoxins, whilst the second encompasses ethyl carbamate, biogenic amines, sulfur dioxide and proteins used as technological ingredients such as fining material. Usually the effective control of chemical hazards is achieved by assuring that they either are minimized or absent in the final product since their removal is somewhat difficult and sometimes it may affect sensory properties, which is a major issue in wine. Interestingly, it is possible to give recommendations to avoid excess of these compounds, but more research is needed to face future challenges related to climate change and consumer demands.


Asunto(s)
Cambio Climático , Inocuidad de los Alimentos , Vitis/química , Vino/análisis , Aminas Biogénicas , Fermentación , Hongos/química , Micotoxinas , Dióxido de Azufre , Uretano
15.
Antioxidants (Basel) ; 9(6)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498420

RESUMEN

Anthocyanins are extensively studied for their health-related properties, including antibacterial activity against urinary tract infections (UTI). Among common fruits, blueberries, with their remarkable antioxidant capacity, are one of the richest sources. Anthocyanin-rich extracts were obtained from four varieties: Snowchaser, Star, Stella Blue and Cristina Blue, grown in the hot climate of Southern Spain. Their total anthocyanins contents (TAC) were determined spectrophotometrically, and the anthocyanin profile by ultra high performance liquid chromatography - tandem mass spectrometer (UHPLC-MS/MS). Their antioxidant activity was assessed by oxygen radical absorbance capacity (ORAC) assay, while antibacterial activity against strains isolated from UTI patients was assessed in vitro, helping to select the varieties with the highest bioactive potential. Star showed the highest TAC and antioxidant activity (1663 ± 159 mg of cyanidin-3-O-glucoside (cy-3-O-glu) equivalents/100 g fresh weight (FW), 6345 ± 601 µmol Trolox equivalents (TE)/100 g FW, respectively), followed by Cristina Blue, Stella Blue and Snowchaser. As far as we know, this is the first time that cyanidin-3-rutinoside has been identified in blueberries. The extracts inhibited all the tested strains, MICs ranging from 0.4 mg/mL (for Stella Blue extract against UTI P. aeruginosa) to 9.5 mg/mL (for all extracts against UTI K. pneumoniae ssp. pneumoniae). This is the first study that assessed in vitro the antibacterial activity of blueberries against Klebsiella pneumoniae, Providencia stuartii and Micrococcus spp. strains isolated from UTI.

16.
Food Chem Toxicol ; 134: 110817, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31521636

RESUMEN

Preventing the abnormal assembly of α-synuclein (α-Syn) and the correct modulation of vitagenes system exercise strong neuroprotective effects. It has been reported that melatonin (MEL), protocatechuic acid (PCA) and hydroxytyrosol (HT) reduce α-Syn toxicity. Their effect on the vitagenes system of PC12 cells have not been explored yet. These bioactive can cross the blood brain barrier (BBB). Therefore, this work aims to evaluate the inhibitory and destabilising capacities of MEL, PCA, HT, and their combinations on α-Syn kinetics and effects on vitagenes system (sirtuin-1 (SIRT-1), sirtuin-2 (SIRT-2), heme oxygenase (HO-1) and heat shock protein 70 (Hsp-70)). In vitro techniques (Thioflavin T (ThT), Transmission Electronic Microscopy (TEM), electrophoresis, MTT assay and qPCR) were used. Compounds, both individually and simultaneously were able to decrease the toxicity induced by α-Syn. Concurrently, occurrence of PCA (100 µM) +HT (100 µM) showed the highest inhibitory effect against α-Syn fibril formation and destabilisation of α-Syn fibrils (88 and 62%, respectively). Moreover, these compounds increased the expression of SIRT-2, HO-1 and Hsp70, contributing to a neuroprotective effect. In addition, the most important result is the increase on the expression of SIRT-2 caused by the combination of MEL + HT + PCA in the absence of α-Syn fibrils.


Asunto(s)
Hidroxibenzoatos/farmacología , Melatonina/farmacología , Fármacos Neuroprotectores/farmacología , Alcohol Feniletílico/análogos & derivados , alfa-Sinucleína/toxicidad , Animales , Proteínas HSP70 de Choque Térmico/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Células PC12 , Alcohol Feniletílico/farmacología , Ratas , Sirtuina 2/metabolismo
17.
Nutrients ; 11(10)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614459

RESUMEN

Angiogenesis drives evolution and destabilisation of atherosclerotic plaques and the growth and expansion of tumour cells. Vascular endothelial growth factor (VEGF) is the main endogenous pro-angiogenic factor in humans. The aim was to provide insight into the anti-VEGF activity of bioactive compounds derived from aromatic amino acids (serotonin, melatonin, 3-indoleacetic acid, 5-hydroxytryptophol and hydroxytyrosol). Experiments involved endothelial cell migration (wound-healing assay), the molecular mechanisms (ELISA assay) and the downstream effects (phospholipase C gamma 1 (PLCγ1), protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) by Western blot) on human umbilical vein endothelial cells (HUVECs). The data suggest for the first time that hydroxytyrosol interacts with surface components of the endothelial cell membrane (, preventing VEGF from activating its receptor. Serotonin and 5-hydroxytryptophol significantly inhibited HUVEC migration (98% and 50%, respectively) following the same mechanism. Conversely to other bioactive compounds, the anti-angiogenic effect of melatonin, serotonin, 3-indoleacetic acid and 5-hydroxytryptophol is not mediated via PLCγ1. However, hydroxytyrosol inhibits PLCγ1 phosphorylation. Additionally, melatonin and serotonin maintained eNOS phosphorylation and hydroxytyrosol significantly activated eNOS-all via Akt. These data provide new evidence supporting the interest in melatonin, serotonin, 3-indoleacetic acid, 5-hydroxytryptophol and hydroxytyrosol for their further exploitation as anti-VEGF ingredients in food.


Asunto(s)
Melatonina/farmacología , Alcohol Feniletílico/análogos & derivados , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidroxitriptofol/farmacología , Ácidos Indolacéticos/administración & dosificación , Ácidos Indolacéticos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Alcohol Feniletílico/farmacología , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
18.
J Agric Food Chem ; 67(14): 3909-3918, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30892883

RESUMEN

Stilbenes are phenolic compounds present in different higher plant families that have shown different biological activities, such as antioxidant properties and antitumoral and anti-atherosclerotic effects, among others. Angiogenesis is a key process involved in both cancer and cardiovascular diseases, the vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 being the main triggers. Certain polyphenol compounds, such as flavonoids, have shown a potent capacity to inhibit VEGF and, consequently, angiogenesis. The present work, therefore, aims to evaluate the potential effect of stilbenes on inhibiting VEGF and their subsequent effect on the downstream signaling pathway (PLCγ1, Akt, and eNOS). VEGFR-2 activation was studied through an ELISA assay in the HUVEC line, while the phosphorylation of intracellular downstream proteins PLCγ1, Akt, and eNOS was tested by Western blot. Student's t test was used to determine significant differences between samples. On the one hand, astringin, pallidol, and ω-viniferin showed the lowest IC50 values (2.90 ± 0.27, 4.42 ± 0.67, and 6.10 ± 1.29 µM, respectively) against VEGFR-2 activation. Additionally, VEGF-induced PLCγ1 phosphorylation was significantly inhibited by ε-viniferin, astringin, and ω-viniferin. However, ε-viniferin and pallidol simultaneously enhanced eNOS activation, proving to be via Akt activation in the case of ε-viniferin. For the first time, these data suggest that stilbenes such as astringin, pallidol, ω-viniferin, and ε-viniferin have a potential anti-angiogenic effect and they could be further considered as anti-VEGF ingredients in food and beverages. In addition, ε-viniferin and pallidol significantly allowed eNOS activation and could likely prevent the side effects caused by anti-VEGF hypertension drugs.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Extractos Vegetales/farmacología , Estilbenos/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vitis/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
19.
Food Chem Toxicol ; 120: 41-49, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29964084

RESUMEN

There is a considerable consensus that the increased production and/or aggregation of α-synuclein (αsyn) plays a central role in the pathogenesis of Parkinson's disease (PD). Therefore, a method of identifying molecules that block αsyn aggregation and prevent the loss of dopaminergic neurons is urgently needed in order to treat or slow the progression of PD. Hydroxytyrosol (HT), a well-known bioactive food compound present in olive oil, olives and wine, possesses demonstrated antioxidant and anti-inflammatory properties that can cross the Blood Brain Barrier (BBB). In the present work, the role of HT, tyrosol (TYR) and other tyrosine metabolites (hydroxyphenyl acetic acid (HPAA)) against αsyn aggregation, destabilisation and toxicity was evaluated through the use of different in vitro tests (Thioflavin T (ThT), Transmission Electronic Microscopy (TEM), electrophoresis and MTT assay). Results show that HT presents a strong inhibitory effect preventing αsyn aggregation and exercising a destabilising effect by disaggregating αsyn fibrils. Moreover, HT is able to counteract αsyn-induced toxicity. This is the first time that the effect of HT against αsyn toxicity and aggregation is evaluated. Thus, HT can be considered a promising compound for further approaches to tackling PD.


Asunto(s)
Amiloide/antagonistas & inhibidores , Alcohol Feniletílico/análogos & derivados , alfa-Sinucleína/antagonistas & inhibidores , Amiloide/química , Animales , Células PC12 , Alcohol Feniletílico/farmacología , Ratas , Espectrometría de Fluorescencia , alfa-Sinucleína/química
20.
Mol Nutr Food Res ; 62(3)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29131485

RESUMEN

SCOPE: Amyloid-ß peptide is the main component of senile plaques in Alzheimer's disease. The inhibition of amyloid-ß peptide assembly, the destabilization of amyloid-ß peptide aggregates, and the decrease of its cytotoxicity for the prevention of neuronal death are considered neuroprotective effects. In this work, the protective effects against amyloid-ß peptide aggregation and cytotoxicity of eight indolic compounds are evaluated: tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 3-indoleacetic acid, tryptophan ethyl ester, and melatonin. METHODS AND RESULTS: Thioflavin T spectroscopic assay, transmission electron microscopy, western blotting, circular dichroism, NMR, cell viability (thiazolyl blue tetrazolium bromide assay), quantitative PCR, and heme oxygenase activity are used. Serotonin is the most effective compound for inhibiting amyloid-ß peptide aggregation. Almost all the indolic compounds tested prevent amyloid-ß peptide-induced and increase cell viability, being between 9 and 25%. Melatonin and serotonin are the most active. Moreover, serotonin increased the expression of SIRT-1 and 2, heat shock protein 70, and heme oxygenase activity, this being a possible mechanism underlying the observed neuroprotective effect. CONCLUSION: Melatonin and other related indolic compounds, mainly serotonin, show an inhibitory and destabilizing effect on amyloid-ß peptide fibril formation and they possess neuroprotective properties related to the vitagenes system.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Melatonina/farmacología , Fármacos Neuroprotectores/farmacología , Serotonina/farmacología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Animales , Dicroismo Circular , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Hemo-Oxigenasa 1/genética , Indoles/farmacología , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Células PC12 , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/toxicidad , Ratas , Sirtuina 1/genética , Sirtuina 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA