Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cancers (Basel) ; 15(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36765705

RESUMEN

Melanoma is the most aggressive skin cancer type and ranks amongst the deadliest cancers due to its ability to develop resistance to current therapies [...].

2.
Comput Struct Biotechnol J ; 21: 1157-1168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36789267

RESUMEN

As a central node of protein synthesis, the cap-binding complex, eukaryotic translation initiation factor 4 F (eIF4F), is involved in cell homeostasis, development and tumorigenesis. A large body of literature exists on the regulation and function of eIF4F in cancer cells, however the intracellular localization patterns of this complex are largely unknown. Since different subsets of mRNAs are translated in distinct subcellular compartments, understanding the distribution of translation initiation factors in the cell is of major interest. Here, we developed an in situ detection method for eIF4F at the single cell level. By using an image-based spot feature analysis pipeline as well as supervised machine learning, we identify five distinct spatial patterns of the eIF4F translation initiation complex in human melanoma cells. The quantity of eIF4F complex per cell correlated with the global mRNA translation activity, and its variation is dynamically regulated by cell state or extracellular stimuli. In contrast, the spatial patterns of eIF4F complexes at the single cell level could distinguish melanoma cells harboring different oncogenic driver mutations. This suggests that different tumorigenic contexts differentially regulate the subcellular localization of mRNA translation, with specific localization of eIF4F potentially associated with melanoma cell chemoresistance.

3.
Cancer Res ; 81(22): 5596-5604, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34470777

RESUMEN

Tremendous advances have been made in cancer immunotherapy over the last decade. Among the different steps of gene expression, translation of mRNA is emerging as an essential player in both cancer and immunity. Changes in mRNA translation are both rapid and adaptive, and translational reprogramming is known to be necessary for sustaining cancer cell proliferation. However, the role of mRNA translation in shaping an immune microenvironment permissive to tumors has not been extensively studied. Recent studies on immunotherapy approaches have indicated critical roles of mRNA translation in regulating the expression of immune checkpoint proteins, tuning the secretion of inflammation-associated factors, modulating the differentiation of immune cells in the tumor microenvironment, and promoting cancer resistance to immunotherapies. Careful consideration of the role of mRNA translation in the tumor-immune ecosystem could suggest more effective therapeutic strategies and may eventually change the current paradigm of cancer immunotherapy. In this review, we discuss recent advances in understanding the relationship between mRNA translation and tumor-associated immunity, the potential mechanisms of immunotherapy resistance in cancers linked to translational reprogramming, and therapeutic perspectives and potential challenges of modulating translational regulation in cancer immunotherapy.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Resistencia a Antineoplásicos , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , ARN Mensajero/genética , Escape del Tumor , Microambiente Tumoral , Animales , Humanos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Biosíntesis de Proteínas , ARN Mensajero/metabolismo
4.
Cell Death Dis ; 11(11): 964, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177494

RESUMEN

By targeting the tumor microenvironment to stimulate antitumor immunity, immunotherapies have revolutionized cancer treatment. However, many patients do not respond initially or develop secondary resistance. Based on the limited resources in the tumor microenvironment and competition between tumor and immune cells, the field of immune metabolism has produced extensive knowledge showing that targeting metabolism could help to modulate antitumor immunity. However, among all the different potentially targetable metabolic pathways, it remains unclear which have more potential to overcome resistance to immune checkpoint inhibitors. Here, we explore metabolic reprogramming in cancer cells, which might inhibit antitumor immunity, and strategies that can be used to favor the antitumor response.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/metabolismo , Neoplasias/terapia , Animales , Técnicas de Reprogramación Celular , Humanos , Microambiente Tumoral/inmunología
5.
Nat Med ; 24(12): 1877-1886, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30374200

RESUMEN

Preventing the immune escape of tumor cells by blocking inhibitory checkpoints, such as the interaction between programmed death ligand-1 (PD-L1) and programmed death-1 (PD-1) receptor, is a powerful anticancer approach. However, many patients do not respond to checkpoint blockade. Tumor PD-L1 expression is a potential efficacy biomarker, but the complex mechanisms underlying its regulation are not completely understood. Here, we show that the eukaryotic translation initiation complex, eIF4F, which binds the 5' cap of mRNAs, regulates the surface expression of interferon-γ-induced PD-L1 on cancer cells by regulating translation of the mRNA encoding the signal transducer and activator of transcription 1 (STAT1) transcription factor. eIF4F complex formation correlates with response to immunotherapy in human melanoma. Pharmacological inhibition of eIF4A, the RNA helicase component of eIF4F, elicits powerful antitumor immune-mediated effects via PD-L1 downregulation. Thus, eIF4A inhibitors, in development as anticancer drugs, may also act as cancer immunotherapies.


Asunto(s)
Antígeno B7-H1/genética , Factor 4F Eucariótico de Iniciación/genética , Melanoma/terapia , Factor de Transcripción STAT1/genética , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Antígeno B7-H1/uso terapéutico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Inmunoterapia , Interferón gamma/genética , Interferón gamma/inmunología , Melanoma/genética , Melanoma/inmunología , Melanoma/patología , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/uso terapéutico , Biosíntesis de Proteínas , Transducción de Señal/efectos de los fármacos , Escape del Tumor/efectos de los fármacos , Escape del Tumor/inmunología
6.
Cell Death Dis ; 9(5): 527, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29743521

RESUMEN

Melanoma is one of the most lethal cancers when it reaches a metastatic stage. Despite advancements in targeted therapies (BRAF inhibitors) or immunotherapies (anti-CTLA-4 or anti-PD1), most patients with melanoma will need additional treatment. Thus, there is an urgent need to develop new therapeutical approaches to bypass resistance and achieve more prolonged responses. In this context, we were interested in E2F1, a transcription factor that plays a major role in the control of cell cycle under physiological and pathological conditions. Here we confirmed that E2F1 is highly expressed in melanoma cells. Inhibition of E2F1 activity further increased melanoma cell death and senescence, both in vitro and in vivo. Moreover, blocking E2F1 also induced death of melanoma cells resistant to BRAF inhibitors. In conclusion, our studies suggest that targeting the E2F1 signaling pathway may be therapeutically relevant for melanoma.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Muerte Celular/efectos de los fármacos , Factor de Transcripción E2F1 , Melanoma Experimental , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Factor de Transcripción E2F1/antagonistas & inhibidores , Factor de Transcripción E2F1/metabolismo , Femenino , Humanos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo
7.
Autophagy ; 13(1): 216-217, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27791469

RESUMEN

Treatment of melanoma has significantly advanced over the last decade, with the development of targeted therapies against the MAPK pathway and immunotherapies to reactivate antitumor immunity. Unfortunately, currently more than 50% of patients are in treatment failure. Thus, identification of new common cellular vulnerability among melanoma cells is an urgent need and will help in the discovery of more efficient treatments against melanoma. We have focused our study on protein processing and have identified a new compound, HA15, targeting HSPA5/BiP, the master regulator of the unfolded protein response (UPR). By inhibiting HSPA5 specifically, our molecule increases the UPR and leads to the death of cancer cells by concomitant induction of autophagy and apoptosis, an effect seen both in vitro and in vivo. Our study provides compelling evidence to support the idea that endoplasmic reticulum (ER) stress inducers could be useful as a new therapeutic approach in melanoma treatment.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Autofagia , Estrés del Retículo Endoplásmico , Proteínas de Choque Térmico/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Muerte Celular , Línea Celular Tumoral , Progresión de la Enfermedad , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Humanos , Relación Estructura-Actividad , Sulfonamidas/química , Tiazoles/química , Respuesta de Proteína Desplegada , Bencenosulfonamidas
9.
J Med Chem ; 59(18): 8276-92, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27575313

RESUMEN

Cancer is the second cause of deaths worldwide and is forecasted to affect more that 22 million people in 2020. Despite dramatic improvement in its care over the last two decades, the treatment of resistant forms of cancer is still an unmet challenge. Thus, innovative and efficient treatments are still needed. In this context, we report herein the synthesis and the evaluation of a new class of bioactive molecules belonging to the N-(4-(3-aminophenyl(thiazol-2-yl)acetamide family. Structure-activity relationships could be driven and resulted in the discovery of lead compound 6b. The latter display high in vitro potency against both sensitive and resistant cancer cell lines on three models: melanoma, pancreatic cancer, and chronic myeloid leukemia (CML). 6b leads to cell death by concomitant induction of apoptosis and autophagy, shows good pharmacokinetic properties, and demonstrates a significant reduction of tumor growth in vivo on A375 xenograft model in mice.


Asunto(s)
Acetamidas/química , Acetamidas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Acetamidas/farmacocinética , Acetamidas/uso terapéutico , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Relación Estructura-Actividad , Tiazoles/química , Tiazoles/farmacocinética , Tiazoles/farmacología , Tiazoles/uso terapéutico
10.
Cancer Cell ; 29(6): 805-819, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27238082

RESUMEN

We have discovered and developed a series of molecules (thiazole benzenesulfonamides). HA15, the lead compound of this series, displayed anti-cancerous activity on all melanoma cells tested, including cells isolated from patients and cells that developed resistance to BRAF inhibitors. Our molecule displayed activity against other liquid and solid tumors. HA15 also exhibited strong efficacy in xenograft mouse models with melanoma cells either sensitive or resistant to BRAF inhibitors. Transcriptomic, proteomic, and biochemical studies identified the chaperone BiP/GRP78/HSPA5 as the specific target of HA15 and demonstrated that the interaction increases ER stress, leading to melanoma cell death by concomitant induction of autophagic and apoptotic mechanisms.


Asunto(s)
Antineoplásicos/administración & dosificación , Resistencia a Antineoplásicos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Melanoma/tratamiento farmacológico , Sulfonamidas/administración & dosificación , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Melanoma/metabolismo , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Sulfonamidas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Pigment Cell Melanoma Res ; 28(1): 8-20, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24862830

RESUMEN

Metformin is the most widely used antidiabetic drug that belongs to the biguanide class. It is very well tolerated and has the major clinical advantage of not inducing hypoglycemia. Metformin decreases hepatic glucose production via a mechanism requiring liver kinase B1, which controls the metabolic checkpoint, AMP-activated protein kinase-mammalian target of rapamycin and neoglucogenic genes. The effects of metformin on this pathway results in reduced protein synthesis and cell proliferation. These observations have given the impetus for many investigations on the role of metformin in the regulation of tumor cell proliferation, cell-cycle regulation, apoptosis, and autophagy. Encouraging results from these studies have shown that metformin could potentially be used as an efficient anticancer drug in various neoplasms such as prostate, breast, lung, pancreas cancers, and melanoma. These findings are strengthened by retrospective epidemiological studies that have found a decrease in cancer risk in diabetic patients treated with metformin. In this review, we have focused our discussion on recent molecular mechanisms of metformin that have been described in various solid tumors in general and in melanoma in particular.


Asunto(s)
Melanoma/tratamiento farmacológico , Metformina/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Metformina/farmacología , Modelos Biológicos , Transducción de Señal/efectos de los fármacos
12.
Cell Discov ; 1: 15030, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27462428

RESUMEN

Specific BRAFV600E inhibitors (BRAFi) are highly effective in the treatment of melanoma. However, acquired drug resistances invariably develop after the initial response. Therefore, the identification of new mechanisms of acquired resistance gives important clues towards the development of therapies that could elicit long lasting responses. Here we report that CD271 confers resistance to BRAFi in melanoma cells. The expression of CD271 is increased by BRAFi through a stimulation of tumor necrosis factor-alpha (TNFα) secretion that leads to NF-κB signaling pathway activation. CD271 is upregulated in a subset of BRAFi-resistant melanoma cells. The inhibition of TNFα/NF-κB pathway and CD271 silencing restore the BRAFi sensitivity of resistant melanoma cells. Finally, increase of CD271 expression is validated in BRAFi-resistant xenografts tumors and also in tumors from the patients who relapsed under BRAFi. In summary, these results reveal a novel TNFα/NF-κB/CD271 axis whose activation contributes to the acquisition of resistance to BRAFi and therefore may represent a novel therapeutic target to improve the efficacy of therapy in melanoma.

13.
Autophagy ; 11(7): 1114-29, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26029847

RESUMEN

Autophagy is induced during differentiation of human monocytes into macrophages that is mediated by CSF1/CSF-1/M-CSF (colony stimulating factor 1 [macrophage]). However, little is known about the molecular mechanisms that link CSF1 receptor engagement to the induction of autophagy. Here we show that the CAMKK2-PRKAA1-ULK1 pathway is required for CSF1-induced autophagy and human monocyte differentiation. We reveal that this pathway links P2RY6 to the induction of autophagy, and we decipher the signaling network that links the CSF1 receptor to P2RY6-mediated autophagy and monocyte differentiation. In addition, we show that the physiological P2RY6 ligand UDP and the specific P2RY6 agonist MRS2693 can restore normal monocyte differentiation through reinduction of autophagy in primary myeloid cells from some but not all chronic myelomonocytic leukemia (CMML) patients. Collectively, our findings highlight an essential role for PRKAA1-mediated autophagy during differentiation of human monocytes and pave the way for future therapeutic interventions for CMML.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Leucemia Mieloide/patología , Factor Estimulante de Colonias de Macrófagos/farmacología , Monocitos/citología , Transducción de Señal/efectos de los fármacos , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Humanos , Leucemia Mieloide/enzimología , Ratones Endogámicos C57BL , Modelos Biológicos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Fosfolipasa C gamma/metabolismo , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato/farmacología
14.
Nat Commun ; 6: 6993, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25925867

RESUMEN

Disruption of the endothelial barrier by tumour-derived secreted factors is a critical step in cancer cell extravasation and metastasis. Here, by comparative proteomic analysis of melanoma secretomes, we identify the matricellular protein SPARC as a novel tumour-derived vascular permeability factor. SPARC deficiency abrogates tumour-initiated permeability of lung capillaries and prevents extravasation, whereas SPARC overexpression enhances vascular leakiness, extravasation and lung metastasis. SPARC-induced paracellular permeability is dependent on the endothelial VCAM1 receptor and p38 MAPK signalling. Blocking VCAM1 impedes melanoma-induced endothelial permeability and extravasation. The clinical relevance of our findings is highlighted by high levels of SPARC detected in tumour from human pulmonary melanoma lesions. Our study establishes tumour-produced SPARC and VCAM1 as regulators of cancer extravasation, revealing a novel targetable interaction for prevention of metastasis.


Asunto(s)
Endotelio Vascular/metabolismo , Melanoma/metabolismo , Metástasis de la Neoplasia , Osteonectina/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Permeabilidad Capilar , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Pulmonares/secundario , Sistema de Señalización de MAP Quinasas , Melanoma/patología , Ratones Desnudos , Comunicación Paracrina
15.
Autophagy ; 10(2): 201-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24300375

RESUMEN

Degradation of signaling proteins is one of the most powerful tumor-suppressive mechanisms by which a cell can control its own growth, its survival, and its motility. Emerging evidence suggests that autophagy limits several signaling pathways by degrading kinases, downstream components, and transcription factors; however, this often occurs under stressful conditions. Our recent studies revealed that constitutive autophagy temporally and spatially controls the RHOA pathway. Specifically, inhibition of autophagosome degradation induces the accumulation of the GTP-bound form of RHOA. The active RHOA is sequestered via SQSTM1/p62 within autolysosomes, and accordingly fails to localize to the spindle midbody or to the cell surface, as we demonstrate herein. As a result, all RHOA-downstream responses are deregulated, thus driving cytokinesis failure, aneuploidy and motility, three processes that directly have an impact upon cancer progression. We therefore propose that autophagy acts as a degradative brake for RHOA signaling and thereby controls cell proliferation, migration, and genome stability.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Proliferación Celular , Proteínas de Choque Térmico/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Animales , Autofagia/genética , Movimiento Celular/fisiología , Células Cultivadas , Citocinesis/genética , Citocinesis/fisiología , Ratones , Fagosomas/metabolismo , Proteína Sequestosoma-1
16.
J Invest Dermatol ; 134(10): 2589-2597, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24756109

RESUMEN

Several reports have demonstrated the inhibitory effect of metformin, a widely used drug in the treatment of type 2 diabetes, on the proliferation of many cancers including melanoma. Recently, it has been shown that metformin is able to modulate the cAMP level in the liver. As cAMP has a crucial role in melanin synthesis and skin pigmentation, we investigated the effect of metformin on melanogenesis both in vitro and in vivo. We showed that metformin led to reduced melanin content in melanoma cells and in normal human melanocytes by decreasing cAMP accumulation and cAMP-responsive element-binding protein phosphorylation. This inhibitory effect is correlated with decreased expression of master genes of melanogenesis, microphthalmia-associated transcription factor, tyrosinase, dopachrome tautomerase, and tyrosinase-related protein 1. Furthermore, we demonstrated that the antimelanogenic effect of metformin is independent of the AMPK pathway. Interestingly, topical application of metformin induced tail whitening in mice. Finally, we confirmed the antimelanogenic effect of metformin on reconstituted human epidermis and on human skin biopsies. These data emphasize the depigmenting effect of metformin and suggest a clinical strategy for using metformin in the topical treatment of hyperpigmentation disorders.


Asunto(s)
Hipoglucemiantes/farmacología , Melaninas/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Metformina/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Animales , Biopsia , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Técnicas In Vitro , Melanocitos/patología , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción Asociado a Microftalmía/metabolismo , Piel/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Pigmentación de la Piel/efectos de los fármacos , Factores de Tiempo
17.
Mol Cancer Ther ; 12(8): 1605-15, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23741061

RESUMEN

Metformin was reported to inhibit the proliferation of many cancer cells, including melanoma cells. In this report, we investigated the effect of metformin on melanoma invasion and metastasis development. Using different in vitro approaches, we found that metformin inhibits cell invasion without affecting cell migration and independently of antiproliferation action. This inhibition is correlated with modulation of expression of proteins involved in epithelial-mesenchymal transition such as Slug, Snail, SPARC, fibronectin, and N-cadherin and with inhibition of MMP-2 and MMP-9 activation. Furthermore, our data indicate that this process is dependent on activation of AMPK and tumor suppressor protein p53. Finally, we showed that metformin inhibits melanoma metastasis development in mice using extravasation and metastasis models. The presented data reinforce the fact that metformin might be a good candidate for clinical trial in melanoma treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Melanoma/metabolismo , Melanoma/patología , Metformina/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Melanoma/genética , Metaloendopeptidasas/metabolismo , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia
18.
Cancer Res ; 73(14): 4311-22, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23704209

RESUMEN

Degradation of signaling proteins is one of the most powerful tumor-suppressive mechanisms by which a cell can control its own growth. Here, we identify RHOA as the molecular target by which autophagy maintains genomic stability. Specifically, inhibition of autophagosome degradation by the loss of the v-ATPase a3 (TCIRG1) subunit is sufficient to induce aneuploidy. Underlying this phenotype, active RHOA is sequestered via p62 (SQSTM1) within autolysosomes and fails to localize to the plasma membrane or to the spindle midbody. Conversely, inhibition of autophagosome formation by ATG5 shRNA dramatically increases localization of active RHOA at the midbody, followed by diffusion to the flanking zones. As a result, all of the approaches we examined that compromise autophagy (irrespective of the defect: autophagosome formation, sequestration, or degradation) drive cytokinesis failure, multinucleation, and aneuploidy, processes that directly have an impact upon cancer progression. Consistently, we report a positive correlation between autophagy defects and the higher expression of RHOA in human lung carcinoma. We therefore propose that autophagy may act, in part, as a safeguard mechanism that degrades and thereby maintains the appropriate level of active RHOA at the midbody for faithful completion of cytokinesis and genome inheritance.


Asunto(s)
Autofagia/fisiología , Citocinesis/fisiología , Inestabilidad Genómica , Proteína de Unión al GTP rhoA/metabolismo , Animales , Autofagia/genética , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patología , Línea Celular , Línea Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiología , Citocinesis/genética , Células Gigantes/metabolismo , Células Gigantes/fisiología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/fisiología , Ratones , Fagosomas/genética , Fagosomas/metabolismo , Fagosomas/fisiología , Proteolisis , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteína de Unión al GTP rhoA/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA