Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Exp Bot ; 75(13): 4111-4127, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581374

RESUMEN

Plant defence peptides are paramount endogenous danger signals secreted after a challenge, intensifying the plant immune response. The peptidic hormone Systemin (Sys) was shown to participate in resistance in several plant pathosystems, although the mechanisms behind Sys-induced resistance when exogenously applied remain elusive. We performed proteomic, metabolomic, and enzymatic studies to decipher the Sys-induced changes in tomato plants in either the absence or the presence of Botrytis cinerea infection. Sys treatments triggered direct proteomic rearrangement mostly involved in carbon metabolism and photosynthesis. However, the final induction of defence proteins required concurrent challenge, triggering priming of pathogen-targeted proteins. Conversely, at the metabolomic level, Sys-treated plants showed an alternative behaviour following a general priming profile. Of the primed metabolites, the flavonoids rutin and isorhamnetin and two alkaloids correlated with the proteins 4-coumarate-CoA-ligase and chalcone-flavanone-isomerase triggered by Sys treatment. In addition, proteomic and enzymatic analyses revealed that Sys conditioned the primary metabolism towards the production of available sugars that could be fuelling the priming of callose deposition in Sys-treated plants; furthermore, PR1 appeared as a key element in Sys-induced resistance. Collectively, the direct induction of proteins and priming of specific secondary metabolites in Sys-treated plants indicated that post-translational protein regulation is an additional component of priming against necrotrophic fungi.


Asunto(s)
Botrytis , Resistencia a la Enfermedad , Enfermedades de las Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/inmunología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Botrytis/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica , Péptidos
2.
Plant J ; 78(2): 227-40, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24506441

RESUMEN

Priming is a physiological state for protection of plants against a broad range of pathogens, and is achieved through stimulation of the plant immune system. Various stimuli, such as beneficial microbes and chemical induction, activate defense priming. In the present study, we demonstrate that impairment of the high-affinity nitrate transporter 2.1 (encoded by NRT2.1) enables Arabidopsis to respond more quickly and strongly to Plectosphaerella cucumerina attack, leading to enhanced resistance. The Arabidopsis thaliana mutant lin1 (affected in NRT2.1) is a priming mutant that displays constitutive resistance to this necrotroph, with no associated developmental or growth costs. Chemically induced priming by ß-aminobutyric acid treatment, the constitutive priming mutant ocp3 and the constitutive priming present in the lin1 mutant result in a common metabolic profile within the same plant-pathogen interactions. The defense priming significantly affects sugar metabolism, cell-wall remodeling and shikimic acid derivatives levels, and results in specific changes in the amino acid profile and three specific branches of Trp metabolism, particularly accumulation of indole acetic acid, indole-3-carboxaldehyde and camalexin, but not the indolic glucosinolates. Metabolomic analysis facilitated identification of three metabolites in the priming fingerprint: galacturonic acid, indole-3-carboxylic acid and hypoxanthine. Treatment of plants with the latter two metabolites by soil drenching induced resistance against P. cucumerina, demonstrating that these compounds are key components of defense priming against this necrotrophic fungus. Here we demonstrate that indole-3-carboxylic acid induces resistance by promoting papillae deposition and H2 O2 production, and that this is independent of PR1, VSP2 and PDF1.2 priming.


Asunto(s)
Proteínas de Transporte de Anión/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Ascomicetos/fisiología , Interacciones Huésped-Patógeno , Aminobutiratos/farmacología , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Pared Celular/ultraestructura , Perfilación de la Expresión Génica , Inmunidad de la Planta/efectos de los fármacos , Inmunidad de la Planta/genética , Ácido Shikímico/metabolismo
3.
Pest Manag Sci ; 80(7): 3553-3566, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38446401

RESUMEN

BACKGROUND: Mycorrhizal plants show enhanced resistance to biotic stresses, but few studies have addressed mycorrhiza-induced resistance (MIR) against biotic challenges in woody plants, particularly citrus. Here we present a comparative study of two citrus species, Citrus aurantium, which is resistant to Tetranychus urticae, and Citrus reshni, which is highly susceptible to T. urticae. Although both mycorrhizal species are protected in locally infested leaves, they show very distinct responses to MIR. RESULTS: Previous studies have indicated that C. aurantium is insensitive to MIR in systemic tissues and MIR-triggered antixenosis. Conversely, C. reshni is highly responsive to MIR which triggers local, systemic and indirect defense, and antixenosis against the pest. Transcriptional, hormonal and inhibition assays in C. reshni indicated the regulation of jasmonic acid (JA)- and abscisic acid-dependent responses in MIR. The phytohormone jasmonic acid isoleucine (JA-Ile) and the JA biosynthesis gene LOX2 are primed at early timepoints. Evidence indicates a metabolic flux from phenylpropanoids to specific flavones that are primed at 24 h post infestation (hpi). MIR also triggers the priming of naringenin in mycorrhizal C. reshni, which shows a strong correlation with several flavones and JA-Ile that over-accumulate in mycorrhizal plants. Treatment with an inhibitor of phenylpropanoid biosynthesis C4H enzyme impaired resistance and reduced the symbiosis, demonstrating that phenylpropanoids and derivatives mediate MIR in C. reshni. CONCLUSION: MIR's effectiveness is inversely correlated to basal immunity in different citrus species, and provides multifaceted protection against T. urticae in susceptible C. reshni, activating rapid local and systemic defenses that are mainly regulated by the accumulation of specific flavones and priming of JA-dependent responses. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Citrus , Micorrizas , Tetranychidae , Tetranychidae/fisiología , Citrus/microbiología , Citrus/inmunología , Citrus/parasitología , Micorrizas/fisiología , Animales , Inmunidad de la Planta , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Especificidad de la Especie , Reguladores del Crecimiento de las Plantas/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología
4.
Mol Plant Microbe Interact ; 26(11): 1334-44, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24088017

RESUMEN

Selected stimuli can prime the plant immune system for a faster and stronger defense reaction to pathogen attack. Pretreatment of Arabidopsis with the chemical agent ß-aminobutyric acid (BABA) augmented H2O2 and callose production after induction with the pathogen-associated molecular pattern (PAMP) chitosan, or inoculation with the necrotrophic fungus Plectosphaerella cucumerina. However, BABA failed to prime H2O2 and callose production after challenge with the bacterial PAMP Flg22. Analysis of Arabidopsis mutants in reactive oxygen species (ROS) production (rbohD) or ROS scavenging (pad2, vtc1, and cat2) suggested a regulatory role for ROS homeostasis in priming of chitosan- and P. cucumerina-inducible callose and ROS. Moreover, rbohD and pad2 were both impaired in BABA-induced resistance against P. cucumerina. Gene expression analysis revealed direct induction of NADPH/respiratory burst oxidase protein D (RBOHD), γ-glutamylcysteine synthetase 1 (GSH1), and vitamin C defective 1 (VTC1) genes after BABA treatment. Conversely, ascorbate peroxidase 1 (APX1) transcription was repressed by BABA after challenge with chitosan or P. cucumerina, probably to provide a more oxidized environment in the cell and facilitate augmented ROS accumulation. Measuring ratios between reduced and oxidized glutathione confirmed that augmented defense expression in primed plants is associated with a more oxidized cellular status. Together, our data indicate that an altered ROS equilibrium is required for augmented defense expression in primed plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Ascomicetos/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Especies Reactivas de Oxígeno/metabolismo , Aminobutiratos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Quitosano/farmacología , Dipéptidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Homeostasis , Peróxido de Hidrógeno/metabolismo , Modelos Biológicos , Mutación , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fenotipo , Enfermedades de las Plantas/microbiología , Transducción de Señal
5.
Plant Physiol ; 158(2): 1054-66, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22158760

RESUMEN

For an efficient defense response against pathogens, plants must coordinate rapid genetic reprogramming to produce an incompatible interaction. Nitrate Trasnporter2 (NRT2) gene family members are sentinels of nitrate availability. In this study, we present an additional role for NRT2.1 linked to plant resistance against pathogens. This gene antagonizes the priming of plant defenses against the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pst). The nrt2 mutant (which is deficient in two genes, NRT2.1 and NRT2.2) displays reduced susceptibility to this bacterium. We demonstrate that modifying environmental conditions that stimulate the derepression of the NRT2.1 gene influences resistance to Pst independently of the total level of endogenous nitrogen. Additionally, hormonal homeostasis seemed to be affected in nrt2, which displays priming of salicylic acid signaling and concomitant irregular functioning of the jasmonic acid and abscisic acid pathways upon infection. Effector-triggered susceptibility and hormonal perturbation by the bacterium seem to be altered in nrt2, probably due to reduced sensitivity to the bacterial phytotoxin coronatine. The main genetic and metabolic targets of coronatine in Arabidopsis (Arabidopsis thaliana) remain largely unstimulated in nrt2 mutants. In addition, a P. syringae strain defective in coronatine synthesis showed the same virulence toward nrt2 as the coronatine-producing strain. Taken together, the reduced susceptibility of nrt2 mutants seems to be a combination of priming of salicylic acid-dependent defenses and reduced sensitivity to the bacterial effector coronatine. These results suggest additional functions for NRT2.1 that may influence plant disease resistance by down-regulating biotic stress defense mechanisms and favoring abiotic stress responses.


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Arabidopsis/genética , Eliminación de Gen , Pseudomonas syringae/fisiología , Solanum lycopersicum/microbiología , Genes de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Datos de Secuencia Molecular , Nitratos/metabolismo
6.
J Fungi (Basel) ; 9(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36836379

RESUMEN

The plant immunity system is being revisited more and more and new elements and roles are attributed to participating in the response to biotic stress. The new terminology is also applied in an attempt to identify different players in the whole scenario of immunity: Phytocytokines are one of those elements that are gaining more attention due to the characteristics of processing and perception, showing they are part of a big family of compounds that can amplify the immune response. This review aims to highlight the latest findings on the role of phytocytokines in the whole immune response to biotic stress, including basal and adaptive immunity, and expose the complexity of their action in plant perception and signaling events.

7.
Plant Sci ; 298: 110595, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32771152

RESUMEN

Arbuscular mycorrhizal symbiosis is restricted in roots, but it also improves shoot responses against leaf challenges, a phenomenon known as Mycorrhiza-Induced Resistance (MIR). This study focuses on mycorrhizal root signals that may orchestrate shoot defence responses. Metabolomic analysis of non-mycorrhizal and mycorrhizal plants upon Botrytis cinerea infection showed that roots rearrange their metabolome mostly in response to the symbiosis, whereas in shoots a stronger impact of the infection is observed. Specific clusters of compounds in shoots and roots display a priming profile suggesting an implication in the enhanced resistance observed in mycorrhizal plants. Among the primed pathways in roots, lignans showed the highest number of hits followed by oxocarboxylic acids, compounds of the amino acid metabolism, and phytohormones. The lignan yatein was present at higher concentrations in roots, root efflux and leaves of mycorrhizal plants This lignan displayed in vitro antimicrobial activity against B. cinerea and it was also functional protecting tomato plants. Besides, several JA defence-related genes were upregulated in mycorrhizal roots regardless of the pathogen infection, whereas PIN-II was primed in roots of mycorrhizal infected plants. These observations suggest that the enhanced resistance in shoots during MIR may be coordinated by lignans and oxylipins with the participation of roots.


Asunto(s)
Botrytis/fisiología , Enfermedades de las Plantas/microbiología , Transducción de Señal , Solanum lycopersicum/fisiología , Solanum lycopersicum/genética , Micorrizas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Simbiosis
8.
Front Plant Sci ; 11: 529, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32536929

RESUMEN

Peptides are important regulators that participate in the modulation of almost every physiological event in plants, including defense. Recently, many of these peptides have been described as defense elicitors, termed phytocytokines, that are released upon pest or pathogen attack, triggering an amplification of plant defenses. However, little is known about peptides sensing and inducing resistance activities in heterologous plants. In the present study, exogenous peptides from solanaceous species, Systemins and HypSys, are sensed and induce resistance to the necrotrophic fungus Plectosphaerella cucumerina in the taxonomically distant species Arabidopsis thaliana. Surprisingly, other peptides from closer taxonomic clades have very little or no effect on plant protection. In vitro bioassays showed that the studied peptides do not have direct antifungal activities, suggesting that they protect the plant through the promotion of the plant immune system. Interestingly, tomato Systemin was able to induce resistance at very low concentrations (0.1 and 1 nM) and displays a maximum threshold being ineffective above at higher concentrations. Here, we show evidence of the possible involvement of the JA-signaling pathway in the Systemin-Induced Resistance (Sys-IR) in Arabidopsis. Additionally, Systemin treated plants display enhanced BAK1 and BIK1 gene expression following infection as well as increased production of ROS after PAMP treatment suggesting that Systemin sensitizes Arabidopsis perception to pathogens and PAMPs.

9.
Front Microbiol ; 7: 1598, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790197

RESUMEN

Mycorrhizal plants are generally quite efficient in coping with environmental challenges. It has been shown that the symbiosis with arbuscular mycorrhizal fungi (AMF) can confer resistance against root and foliar pathogens, although the molecular mechanisms underlying such mycorrhiza-induced resistance (MIR) are poorly understood. Tomato plants colonized with the AMF Rhizophagus irregularis display enhanced resistance against the necrotrophic foliar pathogen Botrytis cinerea. Leaves from arbuscular mycorrhizal (AM) plants develop smaller necrotic lesions, mirrored also by a reduced levels of fungal biomass. A plethora of metabolic changes takes place in AMF colonized plants upon infection. Certain changes located in the oxylipin pathway indicate that several intermediaries are over-accumulated in the AM upon infection. AM plants react by accumulating higher levels of the vitamins folic acid and riboflavin, indolic derivatives and phenolic compounds such as ferulic acid and chlorogenic acid. Transcriptional analysis support the key role played by the LOX pathway in the shoots associated with MIR against B. cinerea. Interestingly, plants that have suffered a short period of nitrogen starvation appear to react by reprogramming their metabolic and genetic responses by prioritizing abiotic stress tolerance. Consequently, plants subjected to a transient nitrogen depletion become more susceptible to B. cinerea. Under these experimental conditions, MIR is severely affected although still functional. Many metabolic and transcriptional responses which are accumulated or activated by MIR such NRT2 transcript induction and OPDA and most Trp and indolic derivatives accumulation during MIR were repressed or reduced when tomato plants were depleted of N for 48 h prior infection. These results highlight the beneficial roles of AMF in crop protection by promoting induced resistance not only under optimal nutritional conditions but also buffering the susceptibility triggered by transient N depletion.

10.
Plant Signal Behav ; 9(5): e28916, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24739434

RESUMEN

Previously we described that different priming stimuli trigger common metabolomic responses against P. cucumerina. Furthermore we showed that several primed metabolites were present following independent priming inducers such as natural constitutive priming promoted by gene mutations and chemical priming induced by the ß-aminobutyric acid (BABA). Despite we found a common metabolomic fingerprint, in the present research we focus our attention in specific metabolites that are primed differentially by a mutation in the NRT2.1 gene (lin1 mutant) and BABA treatments against P. cucumerina. Around eight hundred compounds were overaccumulated in the resistant mutant lin1 and in BABA treated plants upon infection. Among them 404 and 412 were specific of each priming condition while 103 compounds were shared by both. Flavonoids and lignans were specifically accumulated in lin1 in response to the fungal attack, while tyrosine, purine metabolism, and aromatic carbon degradation compounds were only accumulated in BABA primed plants upon infection. However, most metabolites differentially accumulated by the two priming conditions belonged to the same metabolic pathways, suggesting that different priming stimuli, upon a given biotic stress, may stimulate similar pathways but activate specific differences depending on the priming stimulus.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Metaboloma , Enfermedades de las Plantas/genética , Aminobutiratos/farmacología , Arabidopsis/genética , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Hypocreales/patogenicidad , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta
11.
FEMS Microbiol Lett ; 356(2): 184-92, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24606017

RESUMEN

Indole-3-acetic acid (IAA) is a widespread phytohormone among plant-associated bacteria, including the tumour-inducing pathogen of woody hosts, Pseudomonas savastanoi pv. savastanoi. A phylogenetic analysis of the iaaM/iaaH operon, which is involved in the biosynthesis of IAA, showed that one of the two operons encoded by Pseudomonas savastanoi pv. savastanoi NCPPB 3335, iaaM-1/iaaH-1, is horizontally transferred among bacteria belonging to the Pseudomonas syringae complex. We also show that biosynthesis of the phytohormone, virulence and full fitness of this olive pathogen depend only on the functionality of the iaaM-1/iaaH-1 operon. In contrast, the iaaM-2/iaaH-2 operon, which carries a 22-nt insertion in the iaaM-2 gene, does not contribute to the production of IAA by this bacterium. A residual amount of IAA was detected in the culture supernatants of a double mutant affected in both iaaM/iaaH operons, suggesting that a different pathway might also contribute to the total pool of the phytohormone produced by this pathogen. Additionally, we show that exogenously added IAA negatively and positively regulates the expression of genes related to the type III and type VI secretion systems, respectively. Together, these results suggest a role of IAA as a signalling molecule in this pathogen.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Ácidos Indolacéticos/metabolismo , Pseudomonas/crecimiento & desarrollo , Pseudomonas/genética , Vías Biosintéticas/genética , Operón , Virulencia
12.
Front Plant Sci ; 5: 231, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24910636

RESUMEN

Disruption of the high-affinity nitrate transporter NRT2.1 activates the priming defense against Pseudomonas syringae, resulting in enhanced resistance. In this study, it is demonstrated that the high-affinity ammonium transporter AMT1.1 is a negative regulator of Arabidopsis defense responses. The T-DNA knockout mutant amt1.1 displays enhanced resistance against Plectosphaerella cucumerina and reduced susceptibility to P. syringae. The impairment of AMT1.1 induces significant metabolic changes in the absence of challenge, suggesting that amt1.1 retains constitutive defense responses. Interestingly, amt1.1 combats pathogens differently depending on the lifestyle of the pathogen. In addition, N starvation enhances the susceptibility of wild type plants and the mutant amt1.1 to P. syringae whereas it has no effect on P. cucumerina resistance. The metabolic changes of amt1.1 against P. syringae are subtler and are restricted to the phenylpropanoid pathway, which correlates with its reduced susceptibility. By contrast, the amt1.1 mutant responds by activating higher levels of camalexin and callose against P. cucumerina. In addition, amt1.1 shows altered levels of aliphatic and indolic glucosinolates and other Trp-related compounds following infection by the necrotroph. These observations indicate that AMT1.1 may play additional roles that affect N uptake and plant immune responses.

13.
J Plant Physiol ; 169(3): 268-74, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22137605

RESUMEN

Our results show that AtNRT2.1 expression has a positive effect on the NH(4)(+) ion influx, mediated by the HATS, as also occurs with AtAMT1.1 expression on the NO(3)(-) ion influx. AtNRT2.1 expression plays a key role in the regulation of AtAMT1.1 expression and in the NH(4)(+) ion influx, differentiating the nitrogen source, and particularly, the lack of it. Nitrogen starvation produces a compensatory effect by AtAMT1.1 when there is an absence of the AtNRT2.1 gene. Our results also show that, in the atnrt2 mutant lacking both AtNRT2.1 and AtNRT2.2, gene functions present different kinetic parameters on the NH(4)(+) ion influx mediated by the HATS, according to the source and availability of nitrogen. Finally, the absence of AMT1.1 also produces changes in the kinetic parameters of the NO(3)(-) influx, showing different V(max) values depending on the source of nitrogen available.


Asunto(s)
Proteínas de Transporte de Anión/biosíntesis , Proteínas de Arabidopsis/biosíntesis , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/biosíntesis , Nitratos/metabolismo , Proteínas de Plantas/biosíntesis , Compuestos de Amonio Cuaternario/metabolismo , Proteínas de Transporte de Anión/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Transporte Iónico , Nitrógeno/deficiencia , Nitrógeno/metabolismo , Proteínas de Plantas/genética
14.
Plant Physiol Biochem ; 53: 19-26, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22285411

RESUMEN

An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses.


Asunto(s)
Arabidopsis/metabolismo , Glucósidos/metabolismo , Enfermedades de las Plantas/microbiología , Extractos Vegetales/metabolismo , Inmunidad de la Planta/fisiología , Ácido Salicílico/metabolismo , Arabidopsis/química , Cromatografía Liquida/métodos , Glucósidos/análisis , Extractos Vegetales/análisis , Pseudomonas syringae , Ácido Salicílico/análisis , Transducción de Señal , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
15.
Plant Signal Behav ; 7(6): 619-22, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22580578

RESUMEN

A deletion in the high affinity nitrate trasporter NRT2.1 in Arabidopsis results in a reduced susceptibility to Pseudomonas syringae by two different mechanisms, the SA priming and an interference in the effector triggered susceptibility. In the present research we further characterized the metabolic and genetic profiles of the mutant nrt2 in the interaction with P. syringae. Despite the priming found in the SA-dependent pathway, the metabolic changes in nrt2 compared with wild-type plants are more remarkable prior infection. This is associated mainly to a pre-existing over representation of signals attributed to aromatic amino acids and phenylpropanoids in the nrt2. Genomic analysis confirms the implication of aromatic aminoacids and phenylpropanoids, but additionally, suggests a new role in ribosomal proteins as the major changes observed in nrt2 upon infection by the bacterium.


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/microbiología , Eliminación de Gen , Metaboloma/genética , Pseudomonas syringae/fisiología , Transcriptoma/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas , Análisis Multivariante , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Componente Principal
16.
Planta ; 229(2): 331-42, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19023591

RESUMEN

Citrus seedlings (Citrus sinensis L. Osbeck x Poncirus trifoliata Blanco) were used to describe the effects of different N treatments on the NH4+ influx mediated by high- and low-affinity transport systems (HATS and LATS, respectively) and CitAMT1 gene expression. Results show that Citrus plants favor NH4+ over NO3- influx mediated by HATS and LATS when both N sources are present in the nutrient solution and Citrus plants display a much higher capacity to take up NH4+ than NO3-. Furthermore, NH4+ exerts a regulatory effect on NH4+ HATS activity and CitAMT1 expression, both are down-regulated by high N status of the plant, but specifically stimulated by NH4+ and the balance between these two opposite effects depends on the prior nutrition regime of the plant. On the other hand, supply of NO3- inhibits CitAMT1 expression but doesn't affect NH4+ HATS activity on the roots. To explain this discrepancy, it is possible that other CitAMT1 transporters, up-regulated by N limitation, but not repressed by NO3- could be involved in the stimulation of NH4+ HATS activity under pure NO3- nutrition or CitAMT1 transporter could be regulated at the post-transcriptional level.


Asunto(s)
Citrus/efectos de los fármacos , Citrus/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nitrógeno/farmacología , Proteínas de Plantas/genética , Compuestos de Amonio Cuaternario/metabolismo , Transporte Biológico/efectos de los fármacos , Cinética , Nitratos/metabolismo , Especificidad de Órganos/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Soluciones
17.
Plant Physiol Biochem ; 47(7): 592-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19303315

RESUMEN

Polyamines are key regulators of cell development and many plant responses to environmental challenges, however, their functions still remain unclear in complex interactions with other hormones and in biotic or abiotic stress. This lack of knowledge derives from the difficulties on measuring natural polyamines in plants. Here, we present a fast multiresidue method for putrescine (Put), 1,3-diaminopropane (DAP), l-ornithine, spermidine (Spd) and spermine (Spn) measurements in plant samples. Polyamine determination is based on a perchloric acid extraction followed by a simple filtration procedure without previous derivatization. Polyamines are resolved by HPLC in a C18 common column and quantified by electrospray ionization tandem mass spectrometry. (13)C(4)-putrescine and 1,7-diaminoheptane standards were added prior to sample extraction to achieve an accurate quantification in a single run. Chromatography of polyamines presents poor retention when reverse phase C18 common columns are used, because they are very polar compounds and contain several positive charges. To circumvent this problem ionic pairing technique has been used successfully with heptafluorobutyric acid (HFBA) at 1mM in the aqueous phase and 25mM in the sample. Improvement of the signal depleted by HFBA has been achieved by adding 1% of propionic acid to the aqueous and organic eluents. All together, gives a method accurate enough to determine polyamines in plants. To demonstrate the usefulness of the method it has been validated in Arabidopsis thaliana samples and polyamines have been determined in several genotypes that over express (35S::ADC2 line 3.6) or are disrupted (adc2) in the Arginine Decarboxylase2 (ADC2) gene.


Asunto(s)
Arabidopsis/química , Cromatografía Líquida de Alta Presión/métodos , Poliaminas/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Arabidopsis/metabolismo , Diaminas/aislamiento & purificación , Diaminas/metabolismo , Fluorocarburos/aislamiento & purificación , Fluorocarburos/metabolismo , Iones/metabolismo , Proteínas de Plantas/metabolismo , Propionatos/aislamiento & purificación , Propionatos/metabolismo , Putrescina/aislamiento & purificación , Putrescina/metabolismo , Espectrometría de Fluorescencia/métodos
18.
J Exp Bot ; 58(11): 2811-25, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17615410

RESUMEN

Here the isolation and characterization of CitAMT1 cDNA from citrange Troyer (Citrus sinensis L. OsbeckxPoncirus trifoliata Blanco) is reported, suggesting that this belongs to the AMT gene family, which is involved in the high-affinity transport system (HATS). Results show that in Citrus plants, the HATS is much more dependent on the light conditions and C status of the roots than the low-affinity transport system. Most importantly, a strong correlation was found between the regulation of both HATS activity and CitAMT1 expression. CitAMT1 expression is sucrose-stimulated and may account for the regulation of NH(4)(+) HATS. Furthermore, a similar link was also recorded with photosynthetic activity in the shoots, suggesting that the variations in production and transport of photosynthates to the roots are responsible for the diurnal changes of both CitAMT1 expression and NH(4)(+) HATS activity. On the other hand, results indicate that the effect of stimulating light on CitAMT1 expression and NH(4)(+) HATS activity is independent of the circadian rhythm. Finally, CitAMT1 expression seems to be specifically stimulated by sucrose, suggesting that sucrose is a pivotal signal governing both assimilate partitioning from source organs and assimilate utilization in sink organs.


Asunto(s)
Citrus sinensis/metabolismo , Luz , Proteínas de Plantas/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Sacarosa/metabolismo , Transporte Biológico , Citrus sinensis/genética , Citrus sinensis/efectos de la radiación , ADN Complementario/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo
19.
Plant Signal Behav ; 2(1): 50-7, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19516968

RESUMEN

Lycopersicon esculentum plants exhibit increased salt stress tolerance following treatment with adipic acid monoethylester and 1,3-diaminepropane (DAAME), known as an inducer of resistance against biotic stress in tomato and pepper. For an efficient water and nutrient uptake, plants should adapt their water potential to compensate a decrease in water soil potential produced by salt stress. DAAME-treated plants showed a faster and stronger water potential reduction and an enhanced proline accumulation. Salinity-induced oxidative stress was also ameliorated by DAAME treatments. Oxidative membrane damage and ethylene emission were both reduced in DAAME-treated plants. This effect is probably a consequence of an increase of both non-enzymatic antioxidant activity as well as peroxidase activity. DAAME-mediated tolerance resulted in an unaltered photosynthetic rate and a stimulation of the decrease in transpiration under stress conditions without a cost in growth due to salt stress. The reduction in transpiration rate was concomitant with a reduction in phytotoxic Na(+) and Cl(-) accumulation under saline stress. Interestingly, the ABA deficient tomato mutant sitiens was insensitive to DAAME-induced tolerance following NaCl stress exposure. Additionally, DAAME treatments increased the ABA content of leaves, therefore, an intact ABA signalling pathway seems to be important to express DAAME-induced salt tolerance. Here, we show a possibility of enhance tomato stress tolerance by chemical induction of the major plant defences against salt stress. DAAME-induced tolerance against salt stress could be complementary to or share elements with induced resistance against biotic stress. This might be the reason for the observed wide spectrum of effectiveness of this compound.

20.
Plant Signal Behav ; 2(5): 337-42, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19516998

RESUMEN

Previously, we reported that in Citrus plants, nitrate influx through the plasmalemma of roots cells follows a biphasic pattern, suggesting the existence of at least two different uptake systems, a high and low affinity transport system (HATS and LATS, respectively). Here, we describe a novel inducible high affinity transport system (iHATS). This new nitrate transport system has a high capacity to uptake nitrate in two different Citrus rootstocks (Cleopatra mandarin and Troyer citrange). The iHATS was saturable, showing higher affinity than constitutive high affinity transport system (cHATS) to the substrate NO(3) (-). The V(max) for this saturable component iHATS was higher than cHATS, reaching similar values in both rootstocks.Additionally, we studied the regulation of root NO(3) (-) uptake mediated by both HATS (iHATS and cHATS) and LATS. In both rootstocks, cHATS is constitutive and independent of N-status. Concerning the regulation of iHATS, this system is upregulated by NO(3) (-) and down-regulated by the N status and by NO(3) (-) itself when plants are exposed to it for a longer period of time. LATS in Cleopatra mandarin and Troyer citrange rootstocks is repressed by the N-status.The use of various metabolic uncouplers or inhibitors indicated that NO(3) (-) net uptake mediated by iHATS and LATS was an active transport system in both rootstocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA