Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 45, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424542

RESUMEN

BACKGROUND: In the myeloid compartment of the tumor microenvironment, CD244 signaling has been implicated in immunosuppressive phenotype of monocytes. However, the precise molecular mechanism and contribution of CD244 to tumor immunity in monocytes/macrophages remains elusive due to the co-existing lymphoid cells expressing CD244. METHODS: To directly assess the role of CD244 in tumor-associated macrophages, monocyte-lineage-specific CD244-deficient mice were generated using cre-lox recombination and challenged with B16F10 melanoma. The phenotype and function of tumor-infiltrating macrophages along with antigen-specific CD8 T cells were analyzed by flow cytometry and single cell RNA sequencing data analysis, and the molecular mechanism underlying anti-tumorigenic macrophage differentiation, antigen presentation, phagocytosis was investigated ex vivo. Finally, the clinical feasibility of CD244-negative monocytes as a therapeutic modality in melanoma was confirmed by adoptive transfer experiments. RESULTS: CD244fl/flLysMcre mice demonstrated a significant reduction in tumor volume (61% relative to that of the CD244fl/fl control group) 14 days after tumor implantation. Within tumor mass, CD244fl/flLysMcre mice also showed higher percentages of Ly6Clow macrophages, along with elevated gp100+IFN-γ+ CD8 T cells. Flow cytometry and RNA sequencing data demonstrated that ER stress resulted in increased CD244 expression on monocytes. This, in turn, impeded the generation of anti-tumorigenic Ly6Clow macrophages, phagocytosis and MHC-I antigen presentation by suppressing autophagy pathways. Combining anti-PD-L1 antibody with CD244-/- bone marrow-derived macrophages markedly improved tumor rejection compared to the anti-PD-L1 antibody alone or in combination with wild-type macrophages. Consistent with the murine data, transcriptome analysis of human melanoma tissue single-cell RNA-sequencing dataset revealed close association between CD244 and the inhibition of macrophage maturation and function. Furthermore, the presence of CD244-negative monocytes/macrophages significantly increased patient survival in primary and metastatic tumors. CONCLUSION: Our study highlights the novel role of CD244 on monocytes/macrophages in restraining anti-tumorigenic macrophage generation and tumor antigen-specific T cell response in melanoma. Importantly, our findings suggest that CD244-deficient macrophages could potentially be used as a therapeutic agent in combination with immune checkpoint inhibitors. Furthermore, CD244 expression in monocyte-lineage cells serve as a prognostic marker in cancer patients.


Asunto(s)
Melanoma , Monocitos , Humanos , Animales , Ratones , Monocitos/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Macrófagos/metabolismo , Linfocitos T CD8-positivos , Carcinogénesis/metabolismo , Microambiente Tumoral , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504016

RESUMEN

Expression and function of odorant receptors (ORs), which account for more than 50% of G protein-coupled receptors, are being increasingly reported in nonolfactory sites. However, ORs that can be targeted by drugs to treat diseases remain poorly identified. Tumor-derived lactate plays a crucial role in multiple signaling pathways leading to generation of tumor-associated macrophages (TAMs). In this study, we hypothesized that the macrophage OR Olfr78 functions as a lactate sensor and shapes the macrophage-tumor axis. Using Olfr78+/+ and Olfr78-/- bone marrow-derived macrophages with or without exogenous Olfr78 expression, we demonstrated that Olfr78 sensed tumor-derived lactate, which was the main factor in tumor-conditioned media responsible for generation of protumoral M2-TAMs. Olfr78 functioned together with Gpr132 to mediate lactate-induced generation of protumoral M2-TAMs. In addition, syngeneic Olfr78-deficient mice exhibited reduced tumor progression and metastasis together with an increased anti- versus protumoral immune cell population. We propose that the Olfr78-lactate interaction is a therapeutic target to reduce and prevent tumor progression and metastasis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Animales , Proteínas de Ciclo Celular/fisiología , Línea Celular Tumoral , Femenino , Humanos , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Receptores Acoplados a Proteínas G/fisiología , Receptores Odorantes/fisiología , Transducción de Señal , Microambiente Tumoral , Macrófagos Asociados a Tumores/fisiología
3.
Ann Rheum Dis ; 82(8): 1035-1048, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37188496

RESUMEN

OBJECTIVES: 'Invasive pannus' is a pathological hallmark of rheumatoid arthritis (RA). This study aimed to investigate secretome profile of synovial fibroblasts of patients with RA (RA-FLSs), a major cell type comprising the invasive pannus. METHODS: Secreted proteins from RA-FLSs were first identified using liquid chromatography-tandem mass spectrometry analysis. Ultrasonography was performed for affected joints to define synovitis severity at the time of arthrocentesis. Expression levels of myosin heavy chain 9 (MYH9) in RA-FLSs and synovial tissues were determined by ELISA, western blot analysis and immunostaining. A humanised synovitis model was induced in immuno-deficient mice. RESULTS: We first identified 843 proteins secreted from RA-FLSs; 48.5% of the secretome was associated with pannus-driven pathologies. Parallel reaction monitoring analysis of the secretome facilitated discovery of 16 key proteins related to 'invasive pannus', including MYH9, in the synovial fluids, which represented synovial pathology based on ultrasonography and inflammatory activity in the joints. Particularly, MYH9, a key protein in actin-based cell motility, showed a strong correlation with fibroblastic activity in the transcriptome profile of RA synovia. Moreover, MYH9 expression was elevated in cultured RA-FLSs and RA synovium, and its secretion was induced by interleukin-1ß, tumour necrosis factor α, toll-like receptor ligation and endoplasmic reticulum stimuli. Functional experiments demonstrated that MYH9 promoted migration and invasion of RA-FLSs in vitro and in a humanised synovitis model, which was substantially inhibited by blebbistatin, a specific MYH9 inhibitor. CONCLUSIONS: This study provides a comprehensive resource of the RA-FLS-derived secretome and suggests that MYH9 represents a promising target for retarding abnormal migration and invasion of RA-FLSs.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Sinovitis , Animales , Ratones , Sinoviocitos/metabolismo , Secretoma , Membrana Sinovial/metabolismo , Artritis Reumatoide/patología , Movimiento Celular/fisiología , Sinovitis/patología , Fibroblastos/metabolismo , Células Cultivadas , Proliferación Celular/fisiología
4.
Arch Toxicol ; 94(3): 887-909, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32080758

RESUMEN

Polyhexamethylene guanidine phosphate (PHMG-p) was used as a humidifier disinfectant in Korea. PHMG induced severe pulmonary fibrosis in Koreans. The objective of this study was to elucidate mechanism of pulmonary toxicity caused by PHMG-p in rats using multi-omics analysis. Wistar rats were intratracheally instilled with PHMG-p by single (1.5 mg/kg) administration or 4-week (0.1 mg/kg, 2 times/week) repeated administration. Histopathologic examination was performed with hematoxylin and eosin staining. Alveolar macrophage aggregation and granulomatous inflammation were observed in rats treated with single dose of PHMG-p. Pulmonary fibrosis, chronic inflammation, bronchiol-alveolar fibrosis, and metaplasia of squamous cell were observed in repeated dose group. Next generation sequencing (NGS) was performed for transcriptome profiling after mRNA isolation from bronchiol-alveoli. Bronchiol-alveoli proteomic profiling was performed using an Orbitrap Q-exactive mass spectrometer. Serum and urinary metabolites were determined using 1H-NMR. Among 418 differentially expressed genes (DEGs) and 67 differentially expressed proteins (DEPs), changes of 16 mRNA levels were significantly correlated with changes of their protein levels in both single and repeated dose groups. Remarkable biological processes represented by both DEGs and DEPs were defense response, inflammatory response, response to stress, and immune response. Arginase 1 (Arg1) and lipocalin 2 (Lcn2) were identified to be major regulators for PHMG-p-induced pulmonary toxicity based on merged analysis using DEGs and DEPs. In metabolomics study, 52 metabolites (VIP > 0.5) were determined in serum and urine of single and repeated-dose groups. Glutamate and choline were selected as major metabolites. They were found to be major factors affecting inflammatory response in association with DEGs and DEPs. Arg1 and Lcn2 were suggested to be major gene and protein related to pulmonary damage by PHMG-p while serum or urinary glutamate and choline were endogenous metabolites related to pulmonary damage by PHMG-p.


Asunto(s)
Desinfectantes/toxicidad , Guanidinas/toxicidad , Lesión Pulmonar/inducido químicamente , Animales , Biomarcadores/metabolismo , Biología Computacional , Células Epiteliales , Perfilación de la Expresión Génica , Humidificadores , Pulmón , Lesión Pulmonar/veterinaria , Masculino , Metabolómica , Proteómica , Alveolos Pulmonares , Fibrosis Pulmonar , Ratas , Ratas Wistar , República de Corea , Pruebas de Toxicidad , Transcriptoma
5.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098266

RESUMEN

An increased incidence of myocardial infarction (MI) has recently emerged as the cause of cardiovascular morbidity and mortality worldwide. In this study, cardiac function was investigated in a rat myocardial ischemia/reperfusion (I/R) model using echocardiography. Metformin administration significantly increased ejection fraction and fractional shortening values on Days 3 and 7 when MI occurred, indicating that metformin improved left ventricular systolic function. In the Sham + MET and MI + MET groups, the E' value was significantly different up to Day 3 but not at Day 7. This may mean that left ventricular diastolic function was effectively restored to some extent by Day 7 when metformin was administered. These results suggest that diastolic dysfunction, assessed by echocardiography, does not recover in the early phase of ischemic reperfusion injury in the rat myocardial I/R model. However, administering metformin resulted in recovery in the early phase of ischemic reperfusion injury in this model. Further gene expression profiling of left ventricle tissues revealed that the metformin-treated group had notably attenuated immune and inflammatory profiles. To sum up, a rat myocardial I/R injury model and ultrasound-based assessment of left ventricular systolic and diastolic function can be used in translational research and for the development of new heart failure-related drugs, in addition to evaluating the potential of metformin to improve left ventricular (LV) diastolic function.


Asunto(s)
Ecocardiografía , Regulación de la Expresión Génica/efectos de los fármacos , Metformina/farmacología , Daño por Reperfusión Miocárdica , Disfunción Ventricular Izquierda , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Masculino , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Sprague-Dawley , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/metabolismo
6.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967328

RESUMEN

The incidence of myocardial infarction, among the causes of cardiovascular morbidity and mortality, is increasing globally. In this study, left ventricular (LV) dysfunction, including LV systolic and diastolic function, was investigated in a rat myocardial ischemia/reperfusion injury model with echocardiography. The homoisoflavanone sappanone A is known for its anti-inflammatory effects. Using echocardiography, we found that sappanone A administration significantly improved LV systolic and diastolic function in a rat myocardial ischemia/reperfusion injury model, especially in the early phase development of myocardial infarction. Based on myocardial infarct size, serum cardiac marker assay, and histopathological evaluation, sappanone A showed higher efficacy at the doses used in our experiments than curcumin and was evaluated for its potential to improve LV function.


Asunto(s)
Isoflavonas/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Disfunción Ventricular Izquierda/prevención & control , Animales , Modelos Animales de Enfermedad , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Ratas , Ratas Sprague-Dawley , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología
7.
Nucleic Acids Res ; 45(20): 11643-11657, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28977425

RESUMEN

Hypoxia increases both active and repressive histone methylation levels via decreased activity of histone demethylases. However, how such increases coordinately regulate induction or repression of hypoxia-responsive genes is largely unknown. Here, we profiled active and repressive histone tri-methylations (H3K4me3, H3K9me3, and H3K27me3) and analyzed gene expression profiles in human adipocyte-derived stem cells under hypoxia. We identified differentially expressed genes (DEGs) and differentially methylated genes (DMGs) by hypoxia and clustered the DEGs and DMGs into four major groups. We found that each group of DEGs was predominantly associated with alterations in only one type among the three histone tri-methylations. Moreover, the four groups of DEGs were associated with different TFs and localization patterns of their predominant types of H3K4me3, H3K9me3 and H3K27me3. Our results suggest that the association of altered gene expression with prominent single-type histone tri-methylations characterized by different localization patterns and with different sets of TFs contributes to regulation of particular sets of genes, which can serve as a model for coordinated epigenetic regulation of gene expression under hypoxia.


Asunto(s)
Hipoxia de la Célula/fisiología , Epigénesis Genética/genética , Código de Histonas/genética , Histonas/metabolismo , Células Madre/metabolismo , Tejido Adiposo/citología , Línea Celular , Expresión Génica/genética , Regulación de la Expresión Génica , Humanos , Metilación , Oxígeno/metabolismo , ARN Mensajero/genética , Células Madre/citología
8.
Proteomics ; 18(5-6): e1700240, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29280565

RESUMEN

Calorie restriction (CR) is the most frequently studied mechanism for increasing longevity, protecting against stress, and delaying age-associated diseases. Most studies have initiated CR in young animals to determine the protective effects against aging. Although aging phenomena are well-documented, the molecular mechanisms of aging and CR remain unclear. In this study, we observe changes in hepatic proteins upon age-related and diet-restricted changes in the rat liver using quantitative proteomics. Quantitative proteomes are measured using tandem mass tag labeling followed by LC-MS/MS. We compare protein levels in livers from young (6 months old) and old (25 months old) rats with 40% calorie-restricted (YCR and OCR, respectively) or ad libitum diets. In total, 44 279 peptides and 3134 proteins are identified and 260 differentially expressed proteins are found. Functional enrichment analysis show that these proteins are mainly involved in glucose and fatty acid metabolism-related processes, consistent with the theory that energy metabolism regulation is dependent on age-related and calorie-restricted changes in liver tissue. In addition, proteins mediating inflammation and gluconeogenesis are increased in OCR livers, but not YCR livers. These results show that CR in old rats might not have antiaging benefits because liver inflammation is increased.


Asunto(s)
Envejecimiento/metabolismo , Restricción Calórica , Hígado/metabolismo , Proteoma/análisis , Animales , Cromatografía Liquida , Masculino , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
9.
Mol Cell Proteomics ; 15(5): 1681-91, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26969716

RESUMEN

Retinal vascular hyperpermeability causes macular edema, leading to visual deterioration in retinal diseases such as diabetic retinopathy and retinal vascular occlusion. Dysregulation of junction integrity between endothelial cells by vascular endothelial growth factor (VEGF) was shown to cause retinal vascular hyperpermeability. Accordingly, anti-VEGF agents have been used to treat retinal vascular hyperpermeability. However, they can confer potential toxicity through their deleterious effects on maintenance and survival of neuronal and endothelial cells in the retina. Thus, it is important to identify novel therapeutic targets for retinal vascular hyperpermeability other than VEGF. Here, we prepared murine retinas showing VEGF-induced vascular leakage from superficial retinal vascular plexus and prevention of VEGF-induced leakage by anti-VEGF antibody treatment. We then performed comprehensive proteome profiling of these samples and identified retinal proteins for which abundances were differentially expressed by VEGF, but such alterations were inhibited by anti-VEGF antibody. Functional enrichment and network analyses of these proteins revealed the ß2 integrin pathway, which can prevent dysregulation of junction integrity between endothelial cells through cytoskeletal rearrangement, as a potential therapeutic target for retinal vascular hyperpermeability. Finally, we experimentally demonstrated that inhibition of the ß2 integrin pathway salvaged VEGF-induced retinal vascular hyperpermeability, supporting its validity as an alternative therapeutic target to anti-VEGF agents.


Asunto(s)
Antígenos CD18/metabolismo , Proteómica/métodos , Enfermedades de la Retina/metabolismo , Vasos Retinianos/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Anticuerpos/administración & dosificación , Anticuerpos/farmacología , Permeabilidad Capilar , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Mapas de Interacción de Proteínas/efectos de los fármacos , Enfermedades de la Retina/inducido químicamente , Enfermedades de la Retina/tratamiento farmacológico , Vasos Retinianos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
10.
Mol Cell Proteomics ; 15(11): 3461-3472, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27601597

RESUMEN

Sarpogrelate is an antiplatelet agent widely used to treat arterial occlusive diseases. Evaluation of platelet aggregation is essential to monitor therapeutic effects of sarpogrelate. Currently, no molecular signatures are available to evaluate platelet aggregation. Here, we performed comprehensive proteome profiling of platelets collected from 18 subjects before and after sarpogrelate administration using LC-MS/MS analysis coupled with extensive fractionation. Of 5423 proteins detected, we identified 499 proteins affected by sarpogrelate and found that they strongly represented cellular processes related to platelet activation and aggregation, including cell activation, coagulation, and vesicle-mediated transports. Based on the network model of the proteins involved in these processes, we selected three proteins (cut-like homeobox 1; coagulation factor XIII, B polypeptide; and peptidylprolyl isomerase D) that reflect the platelet aggregation-related processes after confirming their alterations by sarpogrelate in independent samples using Western blotting. Our proteomic approach provided a protein profile predictive of therapeutic effects of sarpogrelate.


Asunto(s)
Plaquetas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/administración & dosificación , Proteómica/métodos , Succinatos/administración & dosificación , Plaquetas/metabolismo , Cromatografía Liquida , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Espectrometría de Masas en Tándem
11.
Mol Cell Proteomics ; 13(3): 811-22, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24403596

RESUMEN

Adipose tissue is increasingly recognized as an endocrine organ playing important pathophysiological roles in metabolic abnormalities, such as obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). In particular, visceral adipose tissue (VAT), as opposed to subcutaneous adipose tissue, is closely linked to the pathogenesis of insulin resistance and T2DM. Despite the importance of VAT, its molecular signatures related to the pathogenesis of T2DM have not been systematically explored. Here, we present comprehensive proteomic analysis of VATs in drug-naïve early T2DM patients and subjects with normal glucose tolerance. A total of 4,707 proteins were identified in LC-MS/MS experiments. Among them, 444 increased in abundance in T2DM and 328 decreased. They are involved in T2DM-related processes including inflammatory responses, peroxisome proliferator-activated receptor signaling, oxidative phosphorylation, fatty acid oxidation, and glucose metabolism. Of these proteins, we selected 11 VAT proteins that can represent alteration in early T2DM patients. Among them, up-regulation of FABP4, C1QA, S100A8, and SORBS1 and down-regulation of ACADL and PLIN4 were confirmed in VAT samples of independent early T2DM patients using Western blot. In summary, our profiling provided a comprehensive basis for understanding the link of a protein profile of VAT to early pathogenesis of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Grasa Intraabdominal/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Cromatografía Liquida , Bases de Datos de Proteínas , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Grasa Intraabdominal/patología , Espectrometría de Masas , Modelos Biológicos , Peso Molecular , Reproducibilidad de los Resultados , Transducción de Señal
12.
Proteomics ; 14(23-24): 2742-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25316439

RESUMEN

In proteogenomic analysis, construction of a compact, customized database from mRNA-seq data and a sensitive search of both reference and customized databases are essential to accurately determine protein abundances and structural variations at the protein level. However, these tasks have not been systematically explored, but rather performed in an ad-hoc fashion. Here, we present an effective method for constructing a compact database containing comprehensive sequences of sample-specific variants--single nucleotide variants, insertions/deletions, and stop-codon mutations derived from Exome-seq and RNA-seq data. It, however, occupies less space by storing variant peptides, not variant proteins. We also present an efficient search method for both customized and reference databases. The separate searches of the two databases increase the search time, and a unified search is less sensitive to identify variant peptides due to the smaller size of the customized database, compared to the reference database, in the target-decoy setting. Our method searches the unified database once, but performs target-decoy validations separately. Experimental results show that our approach is as fast as the unified search and as sensitive as the separate searches. Our customized database includes mutation information in the headers of variant peptides, thereby facilitating the inspection of peptide-spectrum matches.


Asunto(s)
Péptidos/metabolismo , Proteínas/metabolismo , Proteómica/métodos , Bases de Datos de Proteínas , Mutación , Péptidos/genética , Proteínas/genética , Neoplasias Gástricas/metabolismo
13.
Free Radic Biol Med ; 221: 273-282, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38740102

RESUMEN

Defective mitochondria and autophagy, as well as accumulation of lipid and iron in WDR45 mutant fibroblasts, is related to beta-propeller protein-associated neurodegeneration (BPAN). In this study, we found that enlarged lysosomes in cells derived from patients with BPAN had low enzyme activity, and most of the enlarged lysosomes had an accumulation of iron and oxidized lipid. Cryo-electron tomography revealed elongated lipid accumulation, and spectrometry-based elemental analysis showed that lysosomal iron and oxygen accumulation superimposed with lipid aggregates. Lysosomal lipid aggregates superimposed with autofluorescence as free radical generator, lipofuscin. To eliminate free radical stress by iron accumulation in cells derived from patients with BPAN, we investigated the effects of the iron chelator, 2,2'-bipyridine (bipyridyl, BIP). To study whether the defects in patient-derived cells can be rescued by an iron chelator BIP, we tested whether the level of iron and reactive oxygen species (ROS) in the cells and genes related to oxidative stress were rescued BIP treatment. Although BIP treatment decreased some iron accumulation in the cytoplasm and mitochondria, the accumulation of iron in the lysosomes and levels of cellular ROS were unaffected. In addition, the change of specific RNA levels related to free radical stress in patient fibroblasts was not rescued by BIP. To alleviate free radical stress, we investigated whether l-serine can regulate abnormal structures in cells derived from patients with BPAN through the regulation of free radical stress. l-serine treatment alleviated increase of enlarged lysosomes and iron accumulation and rescued impaired lysosomal activity by reducing oxidized lipid accumulation in the lysosomes of the cells. Lamellated lipids in the lysosomes of the cells were identified as lipofuscin through correlative light and electron microscopy, and l-serine treatment reduced the increase of lipofuscin. These data suggest that l-serine reduces oxidative stress-mediated lysosomal lipid oxidation and iron accumulation by rescuing lysosomal activity.


Asunto(s)
Fibroblastos , Hierro , Lipofuscina , Lisosomas , Estrés Oxidativo , Especies Reactivas de Oxígeno , Serina , Humanos , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Lipofuscina/metabolismo , Hierro/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Distrofias Neuroaxonales/metabolismo , Distrofias Neuroaxonales/patología , Distrofias Neuroaxonales/tratamiento farmacológico , Distrofias Neuroaxonales/genética , 2,2'-Dipiridil/farmacología , 2,2'-Dipiridil/análogos & derivados , Quelantes del Hierro/farmacología
14.
Exp Mol Med ; 56(5): 1043-1054, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689090

RESUMEN

Biomedical research on the brain has led to many discoveries and developments, such as understanding human consciousness and the mind and overcoming brain diseases. However, historical biomedical research on the brain has unique characteristics that differ from those of conventional biomedical research. For example, there are different scientific interpretations due to the high complexity of the brain and insufficient intercommunication between researchers of different disciplines owing to the limited conceptual and technical overlap of distinct backgrounds. Therefore, the development of biomedical research on the brain has been slower than that in other areas. Brain biomedical research has recently undergone a paradigm shift, and conducting patient-centered, large-scale brain biomedical research has become possible using emerging high-throughput analysis tools. Neuroimaging, multiomics, and artificial intelligence technology are the main drivers of this new approach, foreshadowing dramatic advances in translational research. In addition, emerging interdisciplinary cooperative studies provide insights into how unresolved questions in biomedicine can be addressed. This review presents the in-depth aspects of conventional biomedical research and discusses the future of biomedical research on the brain.


Asunto(s)
Encéfalo , Investigación Biomédica Traslacional , Humanos , Encéfalo/fisiología , Animales , Neuroimagen/métodos , Encefalopatías/patología , Inteligencia Artificial , Investigación Biomédica
15.
Nat Commun ; 15(1): 230, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172108

RESUMEN

Several functions of autophagy associated with proliferation, differentiation, and migration of endothelial cells have been reported. Due to lack of models recapitulating angiogenic sprouting, functional heterogeneity of autophagy in endothelial cells along angiogenic sprouts remains elusive. Here, we apply an angiogenesis-on-a-chip to reconstruct 3D sprouts with clear endpoints. We perform single-cell RNA sequencing of sprouting endothelial cells from our chip to reveal high activation of autophagy in two endothelial cell populations- proliferating endothelial cells in sprout basements and stalk-like endothelial cells near sprout endpoints- and further the reciprocal expression pattern of autophagy-related genes between stalk- and tip-like endothelial cells near sprout endpoints, implying an association of autophagy with tip-stalk cell specification. Our results suggest a model describing spatially differential roles of autophagy: quality control of proliferating endothelial cells in sprout basements for sprout elongation and tip-stalk cell specification near sprout endpoints, which may change strategies for developing autophagy-based anti-angiogenic therapeutics.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Neovascularización Fisiológica/genética , Angiogénesis , Dispositivos Laboratorio en un Chip , Análisis de Secuencia de ARN
16.
Mol Brain ; 16(1): 7, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36647152

RESUMEN

Studies of mouse models of Alzheimer's disease (AD) have demonstrated that nitric oxide synthase 2 (NOS2) is involved in AD pathology. However, the effects of NOS2 on the pathology of Parkinson's disease (PD) are not well studied. To address this gap, we examined the impact of NOS2 on disease-associated phenotypes in a mouse model of PD. Transgenic mice carrying the A53T mutation of α-synuclein (SynA53T) and newly generated double transgenic mice with deletion of NOS2 (SynA53T/NOS2-/-) were used. Compared with SynA53T mice, the loss of nos2 decreased α-synuclein phosphorylation at serine 129 and reduced α-synuclein-induced microglial and astrocyte activation in SynA53T/NOS-/- mice. Additionally, neuroinflammation-related gene clusters in the deep mesencephalic nucleus (DpMe) were altered in SynA53T/NOS-/- mice compared with SynA53T mice. Taken together, our results suggest that deletion of nos2 alleviates α-synuclein pathology and α-synuclein-associated neuroinflammatory responses in the brain.


Asunto(s)
Óxido Nítrico Sintasa de Tipo II , Enfermedad de Parkinson , Sinucleinopatías , Animales , Ratones , alfa-Sinucleína/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Óxido Nítrico Sintasa de Tipo II/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología
17.
Exp Mol Med ; 55(5): 999-1012, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37121977

RESUMEN

Chronic viral infection impairs systemic immunity in the host; however, the mechanism underlying the dysfunction of immune cells in chronic viral infection is incompletely understood. In this study, we studied the lineage differentiation of hematopoietic stem cells (HSCs) during chronic viral infection to elucidate the changes in dendritic cell (DC) differentiation and subsequent impact on T cell functionality using a chronic lymphocytic choriomeningitis virus (LCMV) infection model. We first investigated the lineage differentiation of HSCs in the bone marrow (BM) to elucidate the modulation of immune cell differentiation and found that the populations highly restrained in their differentiation were common myeloid progenitors (CMPs) and common dendritic cell progenitors (CDPs). Of interest, the main immune cells infected with LCMV Clone 13 (CL13) in the BM were CD11b/c+ myeloid DCs. We next characterized CD11b+ DCs that differentiated during chronic LCMV infection. These DCs displayed a less immunogenic phenotype than DCs in naive or acutely infected mice, showing low expression of CD80 but high expression of PD-L1, B7-H4, IDO, TGF-ß, and IL-10. Consequently, these CD11b+ DCs induced less effective CD8+ T cells and more Foxp3+ regulatory T (Treg) cells. Furthermore, CD11b+ DCs generated during CL13 infection could not induce effective CD8+ T cells specific to the antigens of newly invading pathogens. Our findings demonstrate that DCs generated from the BM during chronic viral infection cannot activate fully functional effector CD8+ T cells specific to newly incoming antigens as well as persistent antigens themselves, suggesting a potential cause of the functional alterations in the T cell immune response during chronic viral infection.


Asunto(s)
Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica , Ratones , Animales , Virus de la Coriomeningitis Linfocítica/genética , Linfocitos T CD8-positivos , Linfocitos T Reguladores , Células Dendríticas , Ratones Endogámicos C57BL
18.
Exp Mol Med ; 55(3): 555-564, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869069

RESUMEN

Single-nucleotide variants (SNVs) associated with Parkinson's disease (PD) have been investigated mainly through genome-wide association studies. However, other genomic alterations, including copy number variations, remain less explored. In this study, we conducted whole-genome sequencing of primary (310 PD patients and 100 healthy individuals) and independent (100 PD patients and 100 healthy individuals) cohorts from the Korean population to identify high-resolution small genomic deletions, gains, and SNVs. Global small genomic deletions and gains were found to be associated with an increased and decreased risk of PD development, respectively. Thirty significant locus deletions were identified in PD, with most being associated with an increased PD risk in both cohorts. Small genomic deletions in clustered loci located in the GPR27 region had high enhancer signals and showed the closest association with PD. GPR27 was found to be expressed specifically in brain tissue, and GPR27 copy number loss was associated with upregulated SNCA expression and downregulated dopamine neurotransmitter pathways. Clustering of small genomic deletions on chr20 in exon 1 of the GNAS isoform was detected. In addition, we found several PD-associated SNVs, including one in the enhancer region of the TCF7L2 intron, which exhibited a cis-acting regulatory mode and an association with the beta-catenin signaling pathway. These findings provide a global, whole-genome view of PD and suggest that small genomic deletions in regulatory domains contribute to the risk of PD development.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Estudio de Asociación del Genoma Completo , Variaciones en el Número de Copia de ADN , Encéfalo/metabolismo , Genómica
19.
J Proteome Res ; 11(7): 3816-28, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22686594

RESUMEN

To investigate the effects of changes in extracellular osmolality on the function of kidney collecting duct cells, particularly on water and sodium reabsorption in the conditions of diuresis and antidiuresis, we generated transcriptome and metabolome profiles of primary cultured inner medullary collecting duct (IMCD) cells. They were grown in hyperosmolar culture medium (640 mOsm) for 4 days and then exposed to either reduced (300 mOsm) or same osmolality for 1 or 2 days more. Integrated analysis of the transcriptome and metabolome revealed that decreased extracellular osmolality was associated with decreased levels of organic osmolytes, glucose, intermediates of citric acid cycle, and branched-chain amino acids (BCAA) in IMCD cells, along with significantly decreased gene expression and protein abundance of P-type transporters (ATP1B1), ABC transporters (ABCC5 and ABCG1), and insulin signaling pathways (IRS2). Quantitative real-time RT-PCR and semiquantitative immunoblotting confirmed the changes of transcript levels of differentially expressed genes and protein levels. Taken together, integrated analysis of omics data demonstrated that water and sodium reabsorption could be reduced by decreased extracellular osmolality per se, through decreased levels of ABC transporters and IRS2, which play a potential role in the transport of organic osmolytes, BCAA, glucose, and trafficking of epithelial sodium channel.


Asunto(s)
Túbulos Renales Colectores/metabolismo , Metaboloma , Transcriptoma , Animales , Células Cultivadas , Análisis por Conglomerados , Medios de Cultivo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/fisiología , Espectroscopía de Resonancia Magnética , Masculino , Redes y Vías Metabólicas , Análisis Multivariante , Concentración Osmolar , Reconocimiento de Normas Patrones Automatizadas , Análisis de Componente Principal , Proteoma/genética , Proteoma/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Tolerancia a la Sal , Estadísticas no Paramétricas
20.
iScience ; 25(7): 104517, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35754713

RESUMEN

Clioquinol (CQ) is a hypoxic mimicker to activate hypoxia-inducible factor-1α (HIF-1α) by inhibiting HIF-1α specific asparaginyl hypoxylase (FIH-1). The structural similarity of the Jumonji C (JmjC) domain between FIH-1 and JmjC domain-containing histone lysine demethylases (JmjC-KDMs) led us to investigate whether CQ could inhibit the catalytic activities of JmjC-KDMs. Herein, we showed that CQ inhibits KDM4A/C, KDM5A/B, and KDM6B and affects H3K4me3, H3K9me3, and H3K27me3 marks, respectively. An integrative analysis of the histone methylome and transcriptome data revealed that CQ-mediated JmjC-KDM inhibition altered the transcription of target genes through differential combinations of KDMs and transcription factors. Notably, functional enrichment of target genes showed that CQ and hypoxia commonly affected the response to hypoxia, VEGF signaling, and glycolysis, whereas CQ uniquely altered apoptosis/autophagy and cytoskeleton/extracellular matrix organization. Our results suggest that CQ can be used as a JmjC-KDM inhibitor, HIF-α activator, and an alternative therapeutic agent in hypoxia-based diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA