Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Med Internet Res ; 20(8): e251, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097420

RESUMEN

BACKGROUND: Hospital staff frequently performs the same process hundreds to thousands of times a day. Customizable Internet of Things buttons are small, wirelessly-enabled devices that trigger specific actions with the press of an integrated button and have the potential to automate some of these repetitive tasks. In addition, IoT buttons generate logs of triggered events that can be used for future process improvements. Although Internet of Things buttons have seen some success as consumer products, little has been reported on their application in hospital systems. OBJECTIVE: We discuss potential hospital applications categorized by the intended user group (patient or hospital staff). In addition, we examine key technological considerations, including network connectivity, security, and button management systems. METHODS: In order to meaningfully deploy Internet of Things buttons in a hospital system, we propose an implementation framework grounded in the Plan-Do-Study-Act method. RESULTS: We plan to deploy Internet of Things buttons within our hospital system to deliver real-time notifications in public-facing tasks such as restroom cleanliness and critical supply restocking. We expect results from this pilot in the next year. CONCLUSIONS: Overall, Internet of Things buttons have significant promise; future rigorous evaluations are needed to determine the impact of Internet of Things buttons in real-world health care settings.


Asunto(s)
Atención a la Salud/métodos , Hospitales/normas , Humanos , Internet
2.
JMIR Form Res ; 7: e44725, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943360

RESUMEN

BACKGROUND: Electronic paper (E-paper) screens use electrophoretic ink to provide paper-like low-power displays with advanced networking capabilities that may potentially serve as an alternative to traditional whiteboards and television display screens in hospital settings. E-paper may be leveraged in the emergency department (ED) to facilitate communication. Providing ED patient status updates on E-paper screens could improve patient satisfaction and overall experience and provide more equitable access to their health information. OBJECTIVE: We aimed to pilot a patient-facing digital whiteboard using E-paper to display relevant orienting and clinical information in real time to ED patients. We also sought to assess patients' satisfaction after our intervention and understand our patients' overall perception of the impact of the digital whiteboards on their stay. METHODS: We deployed a 41-inch E-paper digital whiteboard in 4 rooms in an urban, tertiary care, and academic ED and enrolled 110 patients to understand and evaluate their experience. Participants completed a modified Hospital Consumer Assessment of Health Care Provider and Systems satisfaction questionnaire about their ED stay. We compared responses to a matched control group of patients triaged to ED rooms without digital whiteboards. We designed the digital whiteboard based on iterative feedback from various departmental stakeholders. After establishing IT infrastructure to support the project, we enrolled patients on a convenience basis into a control and an intervention (digital whiteboard) group. Enrollees were given a baseline survey to evaluate their comfort with technology and an exit survey to evaluate their opinions of the digital whiteboard and overall ED satisfaction. Statistical analysis was performed to compare baseline characteristics as well as satisfaction. RESULTS: After the successful prototyping and implementation of 4 digital whiteboards, we screened 471 patients for inclusion. We enrolled 110 patients, and 50 patients in each group (control and intervention) completed the study protocol. Age, gender, and racial and ethnic composition were similar between groups. We saw significant increases in satisfaction on postvisit surveys when patients were asked about communication regarding delays (P=.03) and what to do after discharge (P=.02). We found that patients in the intervention group were more likely to recommend the facility to family and friends (P=.04). Additionally, 96% (48/50) stated that they preferred a room with a digital whiteboard, and 70% (35/50) found the intervention "quite a bit" or "extremely" helpful in understanding their ED stay. CONCLUSIONS: Digital whiteboards are a feasible and acceptable method of displaying patient-facing data in the ED. Our pilot suggested that E-paper screens coupled with relevant, real-time clinical data and packaged together as a digital whiteboard may positively impact patient satisfaction and the perception of the facility during ED visits. Further study is needed to fully understand the impact on patient satisfaction and experience. TRIAL REGISTRATION: ClinicalTrials.gov NCT04497922; https://clinicaltrials.gov/ct2/show/NCT04497922.

3.
Proc IEEE Sens ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-36570066

RESUMEN

Recent advances in ingestible sensors have enabled in situ detection of gastrointestinal (GI) biomarkers which shows great potential in shifting the paradigm of diagnosing GI and systemic diseases. However, the humid, acidic gastric environment is extremely harsh to electrically powered sensors, which limits their capacity for long term, continuous monitoring. Here, we propose an encapsulation approach for a gas sensor integrated into a nasogastric (NG) tube that overcomes chemical corrosion, electrical short, and mechanical collision in a gastric environment to enable continuous gaseous biomarkers monitoring. The coating effects on the sensitivity, signal latency, and repeatability are investigated. Our long-term continuous monitoring in vitro results show that the proposed coating method enables the gas sensors to function reliably and consistently in the simulated GI environment for more than 1 week. The encapsulation is composed of Polycaprolactone (PCL) to protect against mechanical scratching and Parylene C to prevent a sensor from chemical corrosion and electrical short. The average life-time of the sensor with 10 micrometers Parylene coating is about 3.6 days. Increasing the coating thickness to 20 micrometers results in 10.0 days. In terms of repeatability, 10 micrometers and 20 micrometers Parylene C coated sensors have a standard deviation of 1.30% and 2.10% for its within sensor response, and 5.19% and 3.06% between sensors respectively.

4.
JMIR Form Res ; 5(8): e30862, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34346904

RESUMEN

BACKGROUND: Display signage is ubiquitous and essential in hospitals to serve several clerical, operational, and clinical functions, including displaying notices, providing directions, and presenting clinical information. These functions improve efficiency and patient engagement, reduce errors, and enhance the continuity of care. Over time, signage has evolved from analog approaches such as whiteboards and handwritten notices to digital displays such as liquid crystal displays, light emitting diodes, and, now, electronic ink displays. Electronic ink displays are paper-like displays that are not backlit and show content by aligning microencapsulated color beads in response to an applied electric current. Power is only required to generate content and not to retain it. These displays are very readable, with low eye strain; minimize the emission of blue light; require minimal power; and can be driven by several data sources, ranging from virtual servers to electronic health record systems. These attributes make adapting electronic ink displays to hospitals an ideal use case. OBJECTIVE: In this paper, we aimed to outline the use of signage and displays in hospitals with a focus on electronic ink displays. We aimed to assess the advantages and limitations of using these displays in hospitals and outline the various public-facing and patient-facing applications of electronic ink displays. Finally, we aimed to discuss the technological considerations and an implementation framework that must be followed when adopting and deploying electronic ink displays. METHODS: The public-facing applications of electronic ink displays include signage and way-finders, timetables for shared workspaces, and noticeboards and bulletin boards. The clinical display applications may be smaller form factors such as door signs or bedside cards. The larger, ≥40-inch form factors may be used within patient rooms or at clinical command centers as a digital whiteboard to display general information, patient and clinician information, and care plans. In all these applications, such displays could replace analog whiteboards, noticeboards, and even other digital screens. RESULTS: We are conducting pilot research projects to delineate best use cases and practices in adopting electronic ink displays in clinical settings. This will entail liaising with key stakeholders, gathering objective logistical and feasibility data, and, ultimately, quantifying and describing the effect on clinical care and patient satisfaction. CONCLUSIONS: There are several use cases in a clinical setting that may lend themselves perfectly to electronic ink display use. The main considerations to be studied in this adoption are network connectivity, content management, privacy and security robustness, and detailed comparison with existing modalities. Electronic ink displays offer a superior opportunity to future-proof existing practices. There is a need for theoretical considerations and real-world testing to determine if the advantages outweigh the limitations of electronic ink displays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA