Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
2.
Physiol Mol Biol Plants ; 29(5): 613-627, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37363421

RESUMEN

Vetiver [Vetiveria zizanioides (L.) Roberty] is a perennial C-4 grass traditionally valued for its aromatic roots/root essential oil. Owing to its deep penetrating web-forming roots, the grass is now widely used across the globe for phytoremediation and the conservation of soil and water. This study has used the transcriptome data of vetiver roots in its two distinct geographic morphotypes (North Indian type A and South Indian type B) for reference gene(s) identification. Further, validation of reference genes using various abiotic stresses such as heat, cold, salt, and drought was carried out. The de novo assembly based on differential genes analysis gave 1,36,824 genes (PRJNA292937). Statistical tests like RefFinder, NormFinder, BestKeeper, geNorm, and Delta-Ct software were applied on 346 selected contigs. Eleven selected genes viz., GAPs, UBE2W, RP, OSCam2, MUB, RPS, Core histone 1, Core histone 2, SAMS, GRCWSP, PLDCP along with Actin were used for qRT-PCR analysis. Finally, the study identified the five best reference genes GAPs, OsCam2, MUB, Core histone 1, and SAMS along with Actin. The two optimal reference genes SAMS and Core histone 1 were identified with the help of qbase + software. The findings of the present analyses have value in the identification of suitable reference gene(s) in transcriptomic and molecular data analysis concerning various phenotypes related to abiotic stress and developmental aspects, as well as a quality control measure in gene expression experiments. Identifying reference genes in vetiver appears important as it allows for accurate normalization of gene expression data in qRT-PCR experiments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01315-7.

3.
Planta ; 256(2): 37, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35819629

RESUMEN

MAIN CONCLUSION: Plant responds to Agrobacterium via three-layered immunity that determines its susceptibility or resistance to Agrobacterium infection. Agrobacterium tumefaciens is a soil-borne Gram-negative bacterium that causes crown gall disease in plants. The remarkable feat of interkingdom gene transfer has been extensively utilised in plant biotechnology to transform plant as well as non-host systems. In the past two decades, the molecular mode of the pathogenesis of A. tumefaciens has been extensively studied. Agrobacterium has also been utilised as a premier model to understand the defence response of plants during plant-Agrobacterium interaction. Nonetheless, the threat of Agrobacterium-mediated crown gall disease persists and is associated with a huge loss of plant vigour in agriculture. Understanding the molecular dialogues between these two interkingdom species might provide a cure for crown gall disease. Plants respond to A. tumefaciens by mounting a three-layered immune response, which is manipulated by Agrobacterium via its virulence effector proteins. Comparative studies on plant defence proteins versus the counter-defence of Agrobacterium have shed light on plant susceptibility and tolerance. It is possible to manipulate a plant's immune system to overcome the crown gall disease and increase its competence via A. tumefaciens-mediated transformation. This review summarises the recent advances in the molecular mode of Agrobacterium pathogenesis as well as the three-layered immune response of plants against Agrobacterium infection.


Asunto(s)
Agrobacterium tumefaciens , Plantas , Agrobacterium tumefaciens/genética , Tumores de Planta/genética , Tumores de Planta/microbiología , Plantas/genética , Virulencia
4.
Appl Microbiol Biotechnol ; 106(19-20): 6455-6469, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36069926

RESUMEN

Solanum viarum serves as a raw material for the steroidal drug industry due to its alkaloid and glycoalkaloid content. Elicitation is well-known for measuring the increase in the yield of bioactive compounds in in vitro cultures. The current study was performed for the accumulation of metabolites viz. solasodine, solanidine, and α-solanine in S. viarum culture using microbial-based elicitors added in 1%, 3%, 5%, and 7% on 25th and 35th day of culture period and harvested on 45th and 50th days of culture cycle. The treatment of 3% Trichoderma reesei and Bacillus tequilensis culture filtrate (CF) significantly increased biomass, alkaloids/glycoalkaloid content, and yield in S. viarum. T. reesei was found to be the best treatment for enhanced growth (GI = 11.65) and glycoalkaloid yield (2.54 mg DW plant-1) after the 50th day of the culture cycle when added on the 25th day. The abundance of gene transcripts involved in the biosynthesis of alkaloids/glycoalkaloids, revealed by quantitative real-time PCR expression analysis correlates with the accumulation of their respective metabolites in elicited plants. Biochemical analysis shows that elicited plants inhibited oxidative damage caused by reactive oxygen species by activating enzymes (superoxide dismutase and ascorbate peroxidase) as well as non-enzymatic antioxidant mechanisms (alkaloids, total phenols, total flavonoids, carotenoids, and proline). The findings of this study clearly demonstrate that the application of T. reesei and B. tequilensis CF at a specific dose and time significantly improve biomass as well as upregulates the metabolite biosynthetic pathway in an important medicinal plant- S. viarum. KEY POINTS: • Biotic elicitors stimulated the alkaloids/glycoalkaloid content in S. viarum plant cultures. • T. reesei was found to be most efficient for enhancing the growth and alkaloids content. • Elicited plants activate ROS based-defense mechanism to overcome oxidative damage.


Asunto(s)
Alcaloides , Solanum , Alcaloides/química , Antioxidantes , Ascorbato Peroxidasas , Carotenoides , Flavonoides , Fenoles , Prolina , Especies Reactivas de Oxígeno , Solanum/química , Solanum/genética , Superóxido Dismutasa
5.
Plant Cell Rep ; 41(4): 873-891, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35067774

RESUMEN

KEY MESSAGE: OsGSTU5 interacts and glutathionylates the VirE2 protein of Agrobacterium and its (OsGSTU5) overexpression and downregulation showed a low and high AMT efficiency in rice, respectively. During Agrobacterium-mediated transformation (AMT), T-DNA along with several virulence proteins such as VirD2, VirE2, VirE3, VirD5, and VirF enter the plant cytoplasm. VirE2 serves as a single-stranded DNA binding (SSB) protein that assists the cytoplasmic trafficking of T-DNA inside the host cell. Though the regulatory roles of VirE2 have been established, the cellular reaction of their host, especially in monocots, has not been characterized in detail. This study identified a cellular interactor of VirE2 from the cDNA library of rice. The identified plant protein encoded by the gene cloned from rice was designated OsGSTU5, it interacted specifically with VirE2 in the host cytoplasm. OsGSTU5 was upregulated during Agrobacterium infection and involved in the post-translational glutathionylation of VirE2 (gVirE2). Interestingly, the in silico analysis showed that the 'gVirE2 + ssDNA' complex was structurally less stable than the 'VirE2 + ssDNA' complex. The gel shift assay also confirmed the attenuated SSB property of gVirE2 over VirE2. Moreover, knock-down and overexpression of OsGSTU5 in rice showed increased and decreased T-DNA expression, respectively after Agrobacterium infection. The present finding establishes the role of OsGSTU5 as an important target for modulation of AMT efficiency in rice.


Asunto(s)
Agrobacterium , Oryza , Agrobacterium/genética , Agrobacterium/metabolismo , Agrobacterium tumefaciens/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Canales Iónicos/metabolismo , Oryza/genética , Oryza/metabolismo
6.
Plant Cell Rep ; 40(9): 1617-1630, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34159416

RESUMEN

One of the most interesting signaling molecules that regulates a wide array of adaptive stress responses in plants are the micro RNAs (miRNAs) that are a unique class of non-coding RNAs constituting novel mechanisms of post-transcriptional gene regulation. Recent studies revealed the role of miRNAs in several biotic and abiotic stresses by regulating various phytohormone signaling pathways as well as by targeting a number of transcription factors (TFs) and defense related genes. Phytohormones are signal molecules modulating the plant growth and developmental processes by regulating gene expression. Studies concerning miRNAs in abiotic stress response also show their vital roles in abiotic stress signaling. Current research indicates that miRNAs may act as possible candidates to create abiotic stress tolerant crop plants by genetic engineering. Yet, the detailed mechanism governing the dynamic expression networks of miRNAs in response to stress tolerance remains unclear. In this review, we provide recent updates on miRNA-mediated regulation of phytohormones combating various stress and its role in adaptive stress response in crop plants.


Asunto(s)
MicroARNs/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas/genética , Estrés Fisiológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Metales Pesados/toxicidad , MicroARNs/genética , Reguladores del Crecimiento de las Plantas/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Estrés Salino/genética , Transducción de Señal , Rayos Ultravioleta
7.
Ecotoxicol Environ Saf ; 207: 111252, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916530

RESUMEN

Drought is the major abiotic factors that limit crop productivity worldwide. To withstand stress conditions, plants alter numerous mechanisms for adaption and tolerance. Therefore, in the present study, 106 rice varieties were screened for drought tolerance phenotype via exposing different concentrations of polyethylene glycol 6000 (PEG) in the hydroponic nutrient medium at the time interval of 1, 3, and 7 days to evaluate the changes in their root system architecture. Further, based on root phenotype obtained after PEG-induced drought, two contrasting varieties drought-tolerant Heena and -sensitive Kiran were selected to study transcriptional and physiological alterations at the same stress durations. Physiological parameters (photosynthesis rate, stomatal conductance, transpiration), and non-enzymatic antioxidants (carotenoids, anthocyanins, total phenol content) production indicated better performance of Heena than Kiran. Comparatively higher accumulation of carotenoid and anthocyanin content and the increased photosynthetic rate was also observed in Heena. Root morphology (length, numbers of root hairs, seminal roots and adventitious roots) and anatomical data (lignin deposition, xylem area) enable tolerant variety Heena to better maintain membrane integrity and relative water content, which also contribute to comparatively higher biomass accumulation in Heena under drought. In transcriptome profiling, significant drought stress-associated differentially expressed genes (DEGs) were identified in both the varieties. A total of 1033 and 936 uniquely upregulated DEGs were found in Heena and Kiran respectively. The significant modulation of DEGs that were mainly associated with phytohormone signaling, stress-responsive genes (LEA, DREB), transcription factors (TFs) (AP2/ERF, MYB, WRKY, bHLH), and genes involved in photosynthesis and antioxidative mechanisms indicate better adaptive nature of Heena in stress tolerance. Additionally, the QTL-mapping analysis showed a very high number of DEGs associated with drought stress at AQHP069 QTL in Heena in comparison to Kiran which further distinguishes the drought-responsive traits at the chromosomal level in both the contrasting varieties. Overall, results support the higher capability of Heena over Kiran variety to induce numerous genes along with the development of better root architecture to endure drought stress.


Asunto(s)
Sequías , Oryza/genética , Estrés Fisiológico/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Oryza/metabolismo , Fenotipo , Fotosíntesis , Reguladores del Crecimiento de las Plantas , Factores de Transcripción/genética , Transcriptoma
8.
Physiol Mol Biol Plants ; 27(8): 1747-1764, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34539114

RESUMEN

The basic helix-loop-helix (bHLH) is the second-largest TF family in plants that play important roles in plant growth, development, and stress responses. In this study, a total of 100 bHLHs were identified using Hidden Markov Model profiles in the Nicotiana tabacum genome, clustered into 15 major groups (I-XV) based on their conserved domains and phylogenetic relationships. Group VIII genes were found to be the most abundant, with 27 NtbHLH members. The expansion of NtbHLHs in the genome was due to segmental and tandem duplication. The purifying selection was found to have an important role in the evolution of NtHLHs. Subsequent qRT-PCR validation of five selected genes from transcriptome data revealed that NtbHLH3.1, NtbHLH3.2, NtbHLH24, NtbHLH50, and NtbHLH59.2 have higher expressions at 12 and 24 h in comparison to 0 h (control) of chilling stress. The validated results demonstrated that NtbHLH3.2 and NtbHLH24 genes have 3 and fivefold higher expression at 12 h and 2 and threefold higher expression at 24 h than control plant, shows high sensitivity towards chilling stress. Moreover, the co-expression of positively correlated genes of NtbHLH3.2 and NtbHLH24 confirmed their functional significance in chilling stress response. Therefore, suggesting the importance of NtbHLH3.2 and NtbHLH24 genes in exerting control over the chilling stress responses in tobacco. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01042-x.

9.
Plant Cell Rep ; 39(11): 1381-1393, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32886139

RESUMEN

Class III peroxidases are secretory enzymes which belong to a ubiquitous multigene family in higher plants and have been identified to play role in a broad range of physiological and developmental processes. Potentially, it is involved in generation and detoxification of hydrogen peroxide (H2O2), and their subcellular localization reflects through three different cycles, namely peroxidative cycle, oxidative and hydroxylic cycles to maintain the ROS level inside the cell. Being an antioxidant, class III peroxidases are an important initial defence adapted by plants to cope with biotic and abiotic stresses. Both these stresses have become a major concern in the field of agriculture due to their devastating effect on plant growth and development. Despite numerous studies on plant defence against both the stresses, only a handful role of class III peroxidases have been uncovered by its functional characterization. This review will cover our current understanding on class III peroxidases and the signalling involved in their regulation under both types of stresses. The review will give a view of class III peroxidases and highlights their indispensable role under stress conditions. Its future application will be discussed to showcase their importance in crop improvement by genetic manipulation and by transcriptome analysis.


Asunto(s)
Productos Agrícolas , Peroxidasas/metabolismo , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Estrés Fisiológico/fisiología , Regulación de la Expresión Génica de las Plantas , Metales Pesados/toxicidad , Familia de Multigenes , Peroxidasas/química , Peroxidasas/clasificación , Peroxidasas/genética , Células Vegetales/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno , Rayos Ultravioleta
10.
Ecotoxicol Environ Saf ; 206: 111361, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32987264

RESUMEN

Among various abiotic stresses, water deficit hit the first in the list followed by heavy metal stresses as a serious environmental growth-limiting factor that restricts the global crop yield. Molecular approaches will help us to trace key regulators which are involved in stress-related phenomenon to enhance crop productivity. The present study functionally characterized one of the key regulators, OsMYB-R1 in Arabidopsis. Phylogenetic analyses indicated that OsMYB-R1 had a close relationship with Sorghum bicolour and Zea mays. Ectopic expression of OsMYB-R1 in Arabidopsis resulted in improved tolerance to PEG/drought and chromium stress in addition to conferring no tolerance to salinity stress. Further RNA seq. data revealed that OsMYB-R1 regulates the expression of key genes that improve the root architecture and maintain the cellular homeostasis of transgenic lines through an efficient anti-oxidant system. It also reveals the differential gene expression of stress-responsive and hormone-responsive genes, which indicate the intricate network of defense regulatory machinery activated in transgenic lines. Additionally, salicylic acid (SA) plays a significant role in promoting the growth of the OsMYB-R1 over-expressing plants and increased GUS intensity in SA treated OsMYB-R1 promoter plants demonstrate the explicit role of SA signaling in overcoming stress tolerance. Whereas no significant change was observed in OsMYB-R1 over-expressing plants after ABA and MeJA treatment. Overall, OsMYB-R1 is a promising gene resource for improving abiotic stress tolerance in other crops, especially in dicotyledon plants.


Asunto(s)
Arabidopsis/fisiología , Oryza/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Ácido Salicílico/metabolismo , Factores de Transcripción/genética
11.
Ecotoxicol Environ Saf ; 201: 110735, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32480163

RESUMEN

Methyl jasmonate (Me-JA) is a plant growth regulator known for modulating plant responses to various abiotic and biotic stresses. The unavoidable arsenic (As) contamination in rice (Oryza sativa) results in reduced crop yield and greater carcinogenic risk to humans. The present work examines the significance of Me-JA induced molecular signaling and tolerance towards arsenic toxicity in rice. The arsenite (AsIII; 25 µM) stress hampered the overall growth and development of the rice seedling. However, the co-application (25 µM AsIII+0.25 µM Me-JA) resulted in increased biomass, chlorophyll content, enhanced antioxidant enzyme activities as compared to AsIII treated plants. The co-application also demonstrated a marked decrease in malondialdehyde content, electrolyte leakage and accumulation of total AsIII content (root + shoot) as compared to AsIII treated plants. The co-application also modulated the expression of genes involved in downstream JA signaling pathway (OsCOI, OsJAZ3, OsMYC2), AsIII uptake (OsLsi1, OsLsi2, OsNIP1;1, OsNIP3;1), translocation (OsLsi6, and OsINT5) and detoxification (OsNRAMP1, OsPCS2, and OsABCC2) which revealed the probable adaptive response of the rice plant to cope up arsenic stress. Our findings reveal that Me-JA alleviates AsIII toxicity by modulating signaling components involved in As uptake, translocation, and detoxification and JA signaling in rice. This study augments our knowledge for the future use of Me-JA in improving tolerance against AsIII stress.


Asunto(s)
Acetatos/farmacología , Arsénico/toxicidad , Ciclopentanos/farmacología , Oryza/efectos de los fármacos , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Acetatos/metabolismo , Arsénico/metabolismo , Arsenitos/metabolismo , Arsenitos/toxicidad , Transporte Biológico , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Humanos , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
12.
Ecotoxicol Environ Saf ; 195: 110471, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32203773

RESUMEN

Rice is the most consumed food crop and essential determinant in global food security program. Currently, arsenic (As) accumulation in rice is a critical concern in terms of both crop productivity and grain quality; therefore, it is an urgent need to reduce As accumulation. Here, we selected a glutaredoxin (OsGrx_C7) gene that plays an essential role in AsIII tolerance in rice. To explore the mechanism, we raised OsGrx_C7 overexpression (OE) rice lines, which showed improved plant AsIII tolerance and lowered its accumulation in grains. Arsenic accumulation in husk, unpolished, and polished rice reduced by ca. 65%, 67%, and 85%, respectively, in OE lines, compared to wild-type (WT) plants. To know the rationale, expression of AsIII transporters (aquaporins) in root and shoot tissues were examined, and revealed that OsGrx_C7 regulates the expression of these genes, which ultimately reduces root to shoot AsIII translocation. Additionally, OsGrx_C7 improves root growth by regulating the expression of oxidative stress-induced root expansion related genes, promote root growth and plant health. Overall, current study suggested that AsIII induced OsGrx_C7 markedly enhanced tolerance to AsIII with reduced accumulation in grains by regulating root expansion and controlling root to shoot As transport by altered expression of AsIII aquaporins.


Asunto(s)
Acuaporinas/genética , Glutarredoxinas/genética , Oryza/genética , Acuaporinas/metabolismo , Arsénico/farmacocinética , Arsénico/toxicidad , Regulación de la Expresión Génica de las Plantas , Glutarredoxinas/metabolismo , Oryza/efectos de los fármacos , Oryza/metabolismo , Raíces de Plantas/metabolismo
13.
Ecotoxicol Environ Saf ; 124: 393-405, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26606179

RESUMEN

Embodied study investigates the role of GRX and associated antioxidant enzymes in the detoxification mechanism between arsenic (As) sensitive (Usar-3) and tolerant cultivar (Pant Dhan 11) of Oryza sativa against As(III) and As(V), under GSH enriched, and GSH deprived conditions. The overall growth and physiological parameters in sensitive cultivar were lower than the tolerant cultivar, against various treatments of As(III) and As(V). The As accumulation in sensitive cv. against both As(III) and As(V) was lower than the corresponding treatments in tolerant cv. However, the As translocation against As(V) was lower (35% and 64%, resp.) than that of As(III), in both the cultivars. In sensitive cv. translocation of Zn and Cu was influenced by both As(V) and As(III) whereas, in tolerant cv. the translocation of Cu, Mn and Zn was influenced only by As(III). Translocation of Fe was negatively influenced by translocation of As in sensitive cv. and positively in tolerant cv. Strong correlation between H2O2, SOD, GRX, GR, GST and GSH/GSSG in sensitive cv. and between DHAR, APX, MDHAR and AsA in tolerant cv. demonstrates the underlying preference of GSH as electron donor for detoxification of H2O2 in sensitive cv. and AsA in tolerant cv. Higher expression of the four GRX and two GST genes in the sensitive cv. than tolerant cv, suggests that under As stress, GRX are synthesized more in the sensitive cv. than tolerant cv. Also, the expression of four GRX genes were higher against As(V) than As(III). The higher As accumulation in the tolerant cv. is due to lower GST expression, is attributed to the absence of thiolation and sequestration of As in roots, the translocation of As to shoots is higher.


Asunto(s)
Antioxidantes/metabolismo , Arsénico/toxicidad , Glutarredoxinas/metabolismo , Glutatión Transferasa/metabolismo , Oryza/efectos de los fármacos , Arsénico/metabolismo , Glutarredoxinas/genética , Glutatión/administración & dosificación , Glutatión Transferasa/genética , Peróxido de Hidrógeno/metabolismo , Oryza/enzimología , Oryza/crecimiento & desarrollo , Estrés Oxidativo , Raíces de Plantas/metabolismo , Plantones/metabolismo
14.
Funct Integr Genomics ; 14(2): 401-17, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24553786

RESUMEN

Industrial growth, ecological disturbances and agricultural practices have contaminated the soil and water with many harmful compounds, including heavy metals. These heavy metals affect growth and development of plants as well as cause severe human health hazards through food chain contamination. In past, studies have been made to identify biochemical and molecular networks associated with heavy metal toxicity and uptake in plants. Studies suggested that most of the physiological and molecular processes affected by different heavy metals are similar to those affected by other abiotic stresses. To identify common and unique responses by different metals, we have studied biochemical and genome-wide modulation in transcriptome of rice (IR-64 cultivar) root after exposure to cadmium (Cd), arsenate [As(V)], lead (Pb) and chromium [Cr(VI)] in hydroponic condition. We observed that root tissue shows variable responses for antioxidant enzyme system for different heavy metals. Genome-wide expression analysis suggests variable number of genes differentially expressed in root in response to As(V), Cd, Pb and Cr(VI) stresses. In addition to unique genes, each heavy metal modulated expression of a large number of common genes. Study also identified cis-acting regions of the promoters which can be determinants for the modulated expression of the genes in response to different heavy metals. Our study advances understanding related to various processes and networks which might be responsible for heavy metal stresses, accumulation and detoxification.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Oryza/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , ARN de Planta/genética , Transcriptoma , Contaminantes Químicos del Agua/toxicidad , Arseniatos/toxicidad , Cadmio/toxicidad , Cromo/toxicidad , Perfilación de la Expresión Génica , Hidroponía , Plomo/toxicidad , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Oryza/genética , Oryza/metabolismo , Estrés Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , ARN de Planta/metabolismo , Transducción de Señal
15.
Ecotoxicology ; 23(7): 1153-63, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24985886

RESUMEN

Arsenic (As) contamination of rice is a major problem for South-East Asia. In the present study, the effect of selenium (Se) on rice (Oryza sativa L.) plants exposed to As was studied in hydroponic culture. Arsenic accumulation, plant growth, thiolic ligands and antioxidative enzyme activities were assayed after single (As and Se) and simultaneous supplementations (As + Se). The results indicated that the presence of Se (25 µM) decreased As accumulation by threefold in roots and twofold in shoots as compared to single As (25 µM) exposed plants. Arsenic induced oxidative stress in roots and shoots was significantly ameliorated by Se supplementation. The observed positive response was found associated with the increased activities of ascorbate peroxidase (APX; EC 1.11.1.11), catalase (CAT; EC 1.11.1.6) and glutathione peroxidase (GPx; EC 1.11.1.9) and induced levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) in As + Se exposed plants as compared to single As treatment. Selenium supplementation modulated the thiol metabolism enzymes viz., γ-glutamylcysteine synthetase (γ-ECS; EC 6.3.2.2), glutathione-S-transferase (GST; EC 2.5.1.18) and phytochelatin synthase (PCS; EC 2.3.2.15). Gene expression analysis of several metalloid responsive genes (LOX, SOD and MATE) showed upregulation during As stress, however, significant downregulation during As + Se exposure as compared to single As treatment. Gene expressions of enzymes of antioxidant and GSH and PC biosynthetic systems, such as APX, CAT, GPx, γ-ECS and PCS were found to be significantly positively correlated with their enzyme activities. The findings suggested that Se supplementation could be an effective strategy to reduce As accumulation and toxicity in rice plants.


Asunto(s)
Arsénico/toxicidad , Oryza/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Compuestos de Sulfhidrilo/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Dipéptidos/metabolismo , Contaminación de Alimentos , Regulación de la Expresión Génica de las Plantas , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Peroxidación de Lípido , Oryza/enzimología , Fitoquelatinas/metabolismo
16.
J Hazard Mater ; 471: 134325, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643573

RESUMEN

Arsenic (As) contamination in rice poses a significant threat to human health due to its toxicity and widespread consumption. Identifying and manipulating key genes governing As accumulation in rice is crucial for reducing this threat. The large NIP gene family of aquaporins in rice presents a promising target due to functional redundancy, potentially allowing for gene manipulation without compromising plant growth. This study aimed to utilize genome editing to generate knock-out (KO) lines of genes of NIP family (OsLsi1, OsNIP3;1) and an anion transporter family (OsLsi2), in order to assess their impact on As accumulation and stress tolerance in rice. KO lines were created using CRISPR/Cas9 technology, and the As accumulation patterns, physiological performance, and grain yield were compared against wild-type (WT) under As-treated conditions. KO lines exhibited significantly reduced As accumulation in grain compared to WT. Notably, Osnip3;1 KO line displayed reduced As in xylem sap (71-74%) and grain (32-46%) upon treatment. Additionally, these lines demonstrated improved silicon (23%) uptake, photosynthetic pigment concentrations (Chl a: 77%; Chl b: 79%, Total Chl: 79% & Carotenoid: 49%) overall physiological and agronomical performance under As stress compared to WT. This study successfully utilized genome editing for the first time to identify OsNIP3;1 as a potential target for manipulating As accumulation in rice without compromising grain yield or plant vigor.


Asunto(s)
Arsénico , Sistemas CRISPR-Cas , Edición Génica , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Arsénico/metabolismo , Arsénico/toxicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Técnicas de Inactivación de Genes , Silicio/metabolismo , Plantas Modificadas Genéticamente/genética , Clorofila/metabolismo
17.
Environ Pollut ; 346: 123506, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360385

RESUMEN

This study addresses the pressing issue of high arsenic (As) contaminations, which poses a severe threat to various life forms in our ecosystem. Despite this prevailing concern, all organisms have developed some techniques to mitigate the toxic effects of As. Certain plants, such as bryophytes, the earliest land plants, exhibit remarkable tolerance to wide range of harsh environmental conditions, due to their inherent competence. In this study, bryophytes collected from West Bengal, India, across varying contamination levels were investigated for their As tolerance capabilities. Assessment of As accumulation potential and antioxidant defense efficiency, including SOD, CAT, APX, GPX etc. revealed Marchantia polymorpha as the most tolerant species. It exhibited highest As accumulation, antioxidative proficiency, and minimal damage. Transcriptomic analysis of M. polymorpha exposed to 40 µM As(III) for 24 and 48 h identified several early responsive differentially expressing genes (DEGs) associated with As tolerance. These includes GSTs, GRXs, Hsp20s, SULTR1;2, ABCC2 etc., indicating a mechanism involving vacuolar sequestration. Interestingly, one As(III) efflux-transporter ACR3, an extrusion pump, known to combat As toxicity was found to be differentially expressed compared to control. The SEM-EDX analysis, further elucidated the operation of As extrusion mechanism, which contributes added As resilience in M. polymorpha. Yeast complementation assay using Δacr3 yeast cells, showed increased tolerance towards As(III), compared to the mutant cells, indicating As tolerant phenotype. Overall, these findings significantly enhance our understanding of As tolerance mechanisms in bryophytes. This can pave the way for the development of genetically engineered plants with heightened As tolerance and the creation of improved plant varieties.


Asunto(s)
Arsénico , Briófitas , Marchantia , Resiliencia Psicológica , Arsénico/toxicidad , Marchantia/genética , Ecosistema , Saccharomyces cerevisiae
18.
Arch Environ Contam Toxicol ; 64(2): 235-42, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23138651

RESUMEN

Thiol metabolism is the primary detoxification strategy by which rice plants tolerate arsenic (As) stress. In light of this, it is important to understand the importance of harmonised thiol metabolism with As accumulation and tolerance in rice plant. For this aim, tolerant (T) and sensitive (S) genotypes were screened from 303 rice (Oryza sativa) genotypes on exposure to 10 and 25 µM arsenite (As(III)) in hydroponic culture. On further As accumulation estimation, contrasting (13-fold difference) T (IC-340072) and S (IC-115730) genotypes were selected. This difference was further evaluated using biochemical and molecular approaches to understand involvement of thiolic metabolism vis-a-vis As accumulation in these two genotypes. Various phytochelatin (PC) species (PC(2), PC(3) and PC(4)) were detected in both the genotypes with a dominance of PC(3). However, PC concentrations were greater in the S genotype, and it was noticed that the total PC (PC(2) + PC(3 )+ PC(4))-to-As(III) molar ratio (PC-SH:As(III)) was greater in T (2.35 and 1.36 in shoots and roots, respectively) than in the S genotype (0.90 and 0.15 in shoots and roots, respectively). Expression analysis of several metal(loid) stress-related genes showed significant upregulation of glutaredoxin, sulphate transporter, and ascorbate peroxidase in the S genotype. Furthermore, enzyme activity of phytochelatin synthase and cysteine synthase was greater on As accumulation in the S compared with the T genotype. It was concluded that the T genotype synthesizes adequate thiols to detoxify metalloid load, whereas the S genotype synthesizes greater but inadequate levels of thiols to tolerate an exceedingly greater load of metalloids, as evidenced by thiol-to-metalloid molar ratios, and therefore shows a phytotoxicity response.


Asunto(s)
Adaptación Fisiológica/fisiología , Arsenitos/toxicidad , Oryza/fisiología , Contaminantes del Suelo/toxicidad , Compuestos de Sulfhidrilo/metabolismo , Aminoaciltransferasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitoquelatinas/metabolismo
19.
J Hazard Mater ; 458: 131815, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37336105

RESUMEN

Metallothioneins (MTs) are cysteine-rich proteins known for their strong metal-binding capabilities, making them effective in detoxifying heavy metals (HMs). This study focuses on characterizing the functional properties of OsMT-I-Id, a type-I Metallothionein found in rice. Using a HM-responsive yeast cup1Δ (DTY4), ycf1∆ (for cadmium), and acr3∆ mutants (for trivalent arsenic), we assessed the impact of OsMT-I-Id on metal accumulation and cellular resilience. Our results demonstrated that yeast cells expressing OsMT-I-Id showed increased tolerance and accumulated higher levels of copper (Cu), arsenic (As), and cadmium (Cd), compared to control cells. This can be attributed to the protein's ability to chelate and bind HMs. Site-directed mutagenesis was employed to investigate the specific contributions of cysteine residues. The study revealed that yeast cells with a mutated C-domain displayed heightened HM sensitivity, while cells with a mutated N-domain exhibited reduced sensitivity. This underscores the critical role of C-cysteine-rich domains in metal binding and tolerance of type-I rice MTs. Furthermore, the study identified the significance of the 12th cysteine position at the N-domain and the 68th and 72nd cysteine positions at the C-domain in influencing OsMT-I-Id metal-binding capacity. This research provides novel insights into the structure-function relationship and metal binding properties of type-I plant MTs.


Asunto(s)
Arsénico , Metales Pesados , Oryza , Cadmio/metabolismo , Oryza/metabolismo , Arsénico/metabolismo , Cisteína/metabolismo , Metalotioneína/metabolismo , Saccharomyces cerevisiae/metabolismo , Metales Pesados/química
20.
Environ Sci Pollut Res Int ; 30(14): 41878-41899, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640234

RESUMEN

In the present scenario, remediation of heavy metals (HMs) contaminated soil has become an important work to be done for the well-being of human and their environment. Phytoremediation can be regarded as an excellent method in environmental technologies. The present contemporary research explores the Solanum viarum Dunal function as a potential accumulator of hazardous HMs viz. lead (Pb), cadmium (Cd), zinc (Zn), and their combination (CHM). On toxic concentrations of Pb, Cd, Zn, and their synergistic exposure, seeds had better germination percentage and their 90d old aerial tissues accumulated Pb, Cd, and Zn concentrations ranging from 44.53, 84.06, and 147.29 mg kg-1 DW, respectively. Pattern of accumulation in roots was as Zn 70.08 > Pb 48.55 > Cd 42.21 mg kg-1DW. Under HMs treatment, positive modulation in physiological performances, antioxidant activities suggested an enhanced tolerance along with higher membrane stability due to increased levels of lignin, proline, and sugar. Phenotypic variations were recorded in prickles and roots of 120 d old HM stressed plants, which are directly correlated with better acclimation. Interestingly, trichomes of the plant also showed HM accumulation. Later, SEM-EDX microanalysis suggested involvement of S. viarum capitate glandular trichomes as excretory organs for Cd and Zn. Thus, the present study provides an understanding of the mechanism that makes S. viarum to function as potent accumulator and provides information to generate plants to be used for phytoremediation.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Solanum , Humanos , Cadmio/análisis , Zinc/análisis , Biodegradación Ambiental , Plomo/análisis , Tricomas/química , Metales Pesados/análisis , Plantas , Contaminantes del Suelo/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA