RESUMEN
Key components of endoplasmic reticulum (ER) Ca2+ release and store-operated Ca2+ entry (SOCE) are likely expressed in all metazoan cells. Due to the complexity of canonical Ca2+ entry mechanisms in neurons, the functional significance of ER-Ca2+ release and SOCE has been difficult to identify and establish. In this review we present evidence of how these two related mechanisms of Ca2+ signalling impact multiple aspects of neuronal physiology and discuss their interaction with the better understood classes of ion channels that are gated by either voltage changes or extracellular ligands in neurons. Given how a small imbalance in Ca2+ homeostasis can have strongly detrimental effects on neurons, leading to cell death, it is essential that neuronal SOCE is carefully regulated. We go on to discuss some mechanisms of SOCE regulation that have been identified in Drosophila and mammalian neurons. These include specific splice variants of stromal interaction molecules, different classes of membrane-interacting proteins and an ER-Ca2+ channel. So far these appear distinct from the mechanisms of SOCE regulation identified in non-excitable cells. Finally, we touch upon the significance of these studies in the context of certain human neurodegenerative diseases.
RESUMEN
Loss of endoplasmic reticular (ER) Ca2+ activates store-operated Ca2+ entry (SOCE) by causing the ER localized Ca2+ sensor STIM to unfurl domains that activate Orai channels in the plasma membrane at membrane contact sites (MCS). Here, we demonstrate a novel mechanism by which the inositol 1,4,5 trisphosphate receptor (IP3R), an ER-localized IP3-gated Ca2+ channel, regulates neuronal SOCE. In human neurons, SOCE evoked by pharmacological depletion of ER-Ca2+ is attenuated by loss of IP3Rs, and restored by expression of IP3Rs even when they cannot release Ca2+, but only if the IP3Rs can bind IP3. Imaging studies demonstrate that IP3Rs enhance association of STIM1 with Orai1 in neuronal cells with empty stores; this requires an IP3-binding site, but not a pore. Convergent regulation by IP3Rs, may tune neuronal SOCE to respond selectively to receptors that generate IP3.
Asunto(s)
Señalización del Calcio , Retículo Endoplásmico , Humanos , Molécula de Interacción Estromal 1/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Neuronas/metabolismo , Calcio/metabolismoRESUMEN
Human neural progenitor cells (hNPCs) are self-renewing cells of neural lineage that can be differentiated into neurons of different subtypes. Here we show that SEPT7, a member of the family of filament-forming GTPases called septins, prevents constitutive Ca2+ entry through the store-operated Ca2+ entry channel, Orai in hNPCs and in differentiated neurons and is thus required for neuronal calcium homeostasis. Previous work in Drosophila neurons has shown that loss of one copy of the evolutionarily-conserved dSEPT7 gene leads to elevated Ca2+ entry via Orai, in the absence of ER-Ca2+ store depletion. We have identified an N-terminal polybasic region of SEPT7, known to interact with membrane-localized phospholipids, as essential for spontaneous calcium entry through Orai in hNPCs, whereas the GTPase domain of dSEPT7 is dispensable for this purpose. Re-organisation of Orai1 and the ER-Ca2+ sensor STIM1 observed near the plasma membrane in SEPT7 KD hNPCs, supports the idea that Septin7 containing heteromers prevent Ca2+ entry through a fraction of STIM-Orai complexes. Possible mechanisms by which SEPT7 reduction leads to opening of Orai channels in the absence of store-depletion are discussed.
Asunto(s)
Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteína ORAI1/metabolismo , Septinas/metabolismo , Animales , Señalización del Calcio , Proteínas de Ciclo Celular/química , Diferenciación Celular , Línea Celular , Drosophila , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Septinas/química , Molécula de Interacción Estromal 1/metabolismoRESUMEN
Calcium imaging in an ex-vivo setup is used to understand the calcium status of isolated cells or tissue. In this chapter we explain the use of the ratiometric chemical indicator Fura-2 which can be loaded into isolated cells in the form of lipophilic acetomethyl (AM) esters. Fura-2 is a combination of calcium chelator and fluorophore, and can be used with dual wavelength excitation (340/380 nm) for quantitative calcium concentrations. The cells can then be viewed using a fluorescence microscope and captured by a CCD camera. We specifically discuss the technique involved in understanding the endoplasmic reticulum (ER)-driven store-operated calcium entry (SOCE) in human neural precursors (NPCs) and spontaneously differentiated neurons derived from a pluripotent human embryonic stem cell (hESC) line. The derivation of neural precursors from stem cells and their subsequent spontaneous neural differentiation is also explained. The method can be used for various non-excitable and excitable cell types including neurons, be it freshly isolated, from frozen vials, or derived from different stem cell lines.
Asunto(s)
Calcio/metabolismo , Diferenciación Celular/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Canales de Calcio/metabolismo , Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Línea Celular , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Colorantes Fluorescentes/metabolismo , Fura-2/metabolismo , HumanosRESUMEN
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.
Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Señalización del Calcio , Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Moléculas de Interacción Estromal/metabolismo , Animales , Canales de Calcio Activados por la Liberación de Calcio/genética , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Moléculas de Interacción Estromal/genéticaRESUMEN
Ca2+ signaling plays a significant role in the development of the vertebrate nervous system where it regulates neurite growth as well as synapse and neurotransmitter specification. Elucidating the role of Ca2+ signaling in mammalian neuronal development has been largely restricted to either small animal models or primary cultures. Here we derived human neural precursor cells (NPCs) from human embryonic stem cells to understand the functional significance of a less understood arm of calcium signaling, Store-operated Ca2+ entry or SOCE, in neuronal development. Human NPCs exhibited robust SOCE, which was significantly attenuated by expression of a stable shRNA-miR targeted toward the SOCE molecule, STIM1. Along with the plasma membrane channel Orai, STIM is an essential component of SOCE in many cell types, where it regulates gene expression. Therefore, we measured global gene expression in human NPCs with and without STIM1 knockdown. Interestingly, pathways down-regulated through STIM1 knockdown were related to cell proliferation and DNA replication processes, whereas post-synaptic signaling was identified as an up-regulated process. To understand the functional significance of these gene expression changes we measured the self-renewal capacity of NPCs with STIM1 knockdown. The STIM1 knockdown NPCs demonstrated significantly reduced neurosphere size and number as well as precocious spontaneous differentiation toward the neuronal lineage, as compared to control cells. These findings demonstrate that STIM1 mediated SOCE in human NPCs regulates gene expression changes, that in vivo are likely to physiologically modulate the self-renewal and differentiation of NPCs.
RESUMEN
A sensitive, specific and reproducible liquid chromatography coupled to tandem mass spectrometric method was developed and validated for the estimation of ciprofloxacin, an extensively used second-generation quinolone antibiotics, in human plasma. A liquid-liquid extraction of ciprofloxacin and the internal standard, ofloxacin, has been approached from the biological matrix using chloroform. Chromatographic separation was achieved in positive ion modes, isocratically on a 3.5 µm C18 analytical column (75 mm×4.6 mm, i.d.) with 0.2% formic acid solution in water: methanol (10:90, v/v) as mobile phase, at a flow rate of 0.5 mL.min-1. The MS/MS ion transitions were monitored as 332.0â231.3 for ciprofloxacin and 362.2â261.0 for IS. The method showed good linearity in the range of 0.01-5.00 µg.mL-1 (r2 >0.99) with a good precision (3.37-12.60%) and accuracy (87.25-114%). At the same time, ciprofloxacin was found to be stable during stability studies viz. bench-top, auto-sampler, freeze-thaw cycle and long-term. The developed and validated method was successfully applied to measure plasma ciprofloxacin concentrations in a single dose bioequivalence study.