Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(6): 1311-1320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216759

RESUMEN

FTIR spectral identification is today's gold standard analytical procedure for plastic pollution material characterization. High-throughput FTIR techniques have been advanced for small microplastics (10-500 µm) but less so for large microplastics (500-5 mm) and macroplastics (> 5 mm). These larger plastics are typically analyzed using ATR, which is highly manual and can sometimes destroy particles of interest. Furthermore, spectral libraries are often inadequate due to the limited variety of reference materials and spectral collection modes, resulting from expensive spectral data collection. We advance a new high-throughput technique to remedy these problems using FTIR microplate readers for measuring large particles (> 500 µm). We created a new reference database of over 6000 spectra for transmission, ATR, and reflection spectral collection modes with over 600 plastic, organic, and mineral reference materials relevant to plastic pollution research. We also streamline future analysis in microplate readers by creating a new particle holder for transmission measurements using off-the-shelf parts and fabricating a nonplastic 96-well microplate for storing particles. We determined that particles should be presented to microplate readers as thin as possible due to thick particles causing poor-quality spectra and identifications. We validated the new database using Open Specy and demonstrated that additional transmission and reflection spectra reference data were needed in spectral libraries.

2.
J Am Chem Soc ; 141(43): 17370-17381, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31584807

RESUMEN

The reductive cleavage of aryl ether linkages is a key step in the disassembly of lignin to its monolignol components, where selectivity is determined by the kinetics of multiple parallel and consecutive liquid-phase reactions. Triphasic hydrogenolysis of 13C-labeled benzyl phenyl ether (BPE, a model compound for the major ß-O-4 linkage in lignin), catalyzed by Ni/γ-Al2O3, was observed directly at elevated temperatures (150-175 °C) and pressures (79-89 bar) using operando magic-angle spinning NMR spectroscopy. Liquid-vapor partitioning in the NMR rotor was quantified using the 13C NMR resonances for the 2-propanol solvent, whose chemical shifts report on the internal reactor temperature. At 170 °C, BPE is converted to toluene and phenol with k1 = 0.17 s-1 gcat-1 and an apparent activation barrier of (80 ± 8) kJ mol-1. Subsequent phenol hydrogenation occurs much more slowly (k2 = 0.0052 s-1 gcat-1 at 170-175 °C), such that cyclohexanol formation is significant only at higher temperatures. Toluene is stable under these reaction conditions, but its methyl group undergoes facile H/D exchange (k3 = 0.046 s-1 gcat-1 at 175 °C). While the source of the reducing equivalents for both hydrogenolysis and hydrogenation is exclusively H2/D2(g) rather than the alcohol solvent at these temperatures, the initial isotopic composition of adsorbed H/D on the catalyst surface is principally determined by the solvent isotopic composition (2-PrOH/D). All reactions are preceded by a pronounced induction period associated with catalyst activation. In air, Ni nanoparticles are passivated by a surface oxide monolayer, whose removal under H2 proceeds with an apparent activation barrier of (72 ± 13) kJ mol-1. The operando NMR spectra provide molecularly specific, time-resolved information about the multiple simultaneous and sequential processes as they occur at the solid-liquid interface.

3.
Anal Chem ; 88(1): 868-76, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26632663

RESUMEN

Ion-mobility mass spectrometry is utilized to examine the metacluster formation of serine, asparagine, isoleucine, and tryptophan. These amino acids are representative of different classes of noncharged amino acids. We show that they can form relatively large metaclusters in solution that are difficult or impossible to observe by traditional solution techniques. We further demonstrate, as an example, that the formation of Ser metaclusters is not an ESI artifact because large metaclusters can be detected in negative polarity and low concentration with similar cross sections to those measured in positive polarity and higher concentration. The growth trends of tryptophan and isoleucine metaclusters, along with serine, asparagine, and the previously studied phenylalanine, are balanced among various intrinsic properties of individual amino acids (e.g., hydrophobicity, size, and shape). The metacluster cross sections of hydrophilic residues (Ser, Asn, Trp) tend to stay on or fall below the isotropic model trend lines whereas those of hydrophobic amino acids (Ile, Phe) deviate positively from the isotropic trend lines. The growth trends correlate well to the predicted aggregation propensity of individual amino acids. From the metacluster data, we introduce a novel approach to score and predict aggregation propensity of peptides, which can offer a significant improvement over the existing methods in terms of accuracy. Using a set of hexapeptides, we show that the strong negative deviations of Ser metaclusters from the isotropic model leads a prediction of microcrystalline formation for the SFSFSF peptide, whereas the strong positive deviation of Ile leads to prediction or fibril formation for the NININI peptide. Both predictions are confirmed experimentally using ion mobility and TEM measurements. The peptide SISISI is predicted to only weakly aggregate, a prediction confirmed by TEM.


Asunto(s)
Aminoácidos/análisis , Péptidos/síntesis química , Espectrometría de Masas , Péptidos/química , Agregado de Proteínas , Conformación Proteica
4.
Biochemistry ; 54(26): 4050-62, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26070092

RESUMEN

Aggregation of proteins to fiberlike aggregates often involves a transformation of native monomers to ß-sheet-rich oligomers. This general observation underestimates the importance of α-helical segments in the aggregation cascade. Here, using a combination of experimental techniques and accelerated molecular dynamics simulations, we investigate the aggregation of a 43-residue, apolipoprotein A-I mimetic peptide and its E21Q and D26N mutants. Our study indicates a strong propensity of helical segments not to adopt cross-ß-fibrils. The helix-turn-helix monomeric conformation of the peptides is preserved in the mature fibrils. Furthermore, we reveal opposite effects of mutations on and near the turn region in the self-assembly of these peptides. We show that the E21-R24 salt bridge is a major contributor to helix-turn-helix folding, subsequently leading to abundant fibril formation. On the other hand, the K19-D26 interaction is not required to fold the native helix-turn-helix peptide. However, removal of the charged D26 residue decreases the stability of the helix-turn-helix monomer and consequently reduces the level of aggregation. Finally, we provide a more refined assembly model for the helix-turn-helix peptides from apolipoprotein A-I based on the parallel stacking of helix-turn-helix dimers.


Asunto(s)
Amiloide/química , Apolipoproteína A-I/química , Péptidos/química , Agregado de Proteínas , Secuencia de Aminoácidos , Amiloide/genética , Amiloide/ultraestructura , Apolipoproteína A-I/genética , Apolipoproteína A-I/ultraestructura , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Puntual , Estructura Secundaria de Proteína
5.
ACS Sustain Chem Eng ; 12(22): 8573-8580, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38845760

RESUMEN

Valorization of algal biomass to fuels and chemicals frequently requires pretreatment to lyse cells and extract lipids, leaving behind an extracted solid residue as an underutilized intermediate. Mild oxidative treatment (MOT) is a promising route to simultaneously convert nitrogen contained in these residues to easily recyclable ammonium and to convert carbon in the same fraction to biofuel precursor carboxylates. We show that for a Nannochloropsis algae under certain oxidation conditions, nearly all the nitrogen in the residues can be converted to ammonium and recovered by cation exchange, while up to ∼20% of the carbon can be converted to short chain carboxylates. At the same time, we also show that soluble phosphorus in the form of phosphate can be selectively recovered by anion exchange, leaving a clean aqueous carbon stream for further upgrading.

6.
Magn Reson Imaging ; 56: 37-44, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30482639

RESUMEN

A new MAS-NMR rotor (the WHiMS rotor) has been developed which can reach pressures of 400 bar at 20 °C or 225 bar at 250 °C. These rotors are ideal for mixed phase systems such as a reaction using a solid catalyst with a liquid/supercritical solvent topped with high pressure gas in the head space. After solid and liquid portions of the sample are loaded, the rotor is capped with an o-ring equipped polymer bushing that snaps into a mating groove in the rotor. The bushings incorporate a check valve into the sealing mechanism which allows for pressurization without mechanical manipulation - they will allow gas to flow in but not out. This WHiMS rotor design has enabled experiments on a wide variety of biotic and abiotic mixed-phase systems. Geochemical systems have also been studied, for example, adsorption and confinement studies of supercritical methane/CO2 in clays and other minerals which display pressure dependent 13C chemical shifts. Example data from other mixed-phase chemical and microbial systems are reported. These include monitoring metabolite conversion of extremophilic bacteria found in subsurface systems at elevated pressures and real-time operando reactions in catalysis systems - with liquid-quality resolution for 1H and 13C NMR spectra.


Asunto(s)
Dióxido de Carbono/análisis , Calor , Espectroscopía de Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/métodos , Biomasa , Diseño de Equipo , Fracking Hidráulico/instrumentación , Presión
7.
J Phys Chem B ; 118(38): 11220-30, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25153942

RESUMEN

We have investigated at the oligomeric level interactions between Aß(25-35) and Tau(273-284), two important fragments of the amyloid-ß and Tau proteins, implicated in Alzheimer's disease. We are able to directly observe the coaggregation of these two peptides by probing the conformations of early heteroligomers and the macroscopic morphologies of the aggregates. Ion-mobility experiment and theoretical modeling indicate that the interactions of the two fragments affect the self-assembly processes of both peptides. Tau(273-284) shows a high affinity to form heteroligomers with existing Aß(25-35) monomer and oligomers in solution. The configurations and characteristics of the heteroligomers are determined by whether the population of Aß(25-35) or Tau(273-284) is dominant. As a result, two types of aggregates are observed in the mixture with distinct morphologies and dimensions from those of pure Aß(25-35) fibrils. The incorporation of some Tau into ß-rich Aß(25-35) oligomers reduces the aggregation propensity of Aß(25-35) but does not fully abolish fibril formation. On the other hand, by forming complexes with Aß(25-35), Tau monomers and dimers can advance to larger oligomers and form granular aggregates. These heteroligomers may contribute to toxicity through loss of normal function of Tau or inherent toxicity of the aggregates themselves.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Microscopía de Fuerza Atómica , Modelos Moleculares , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray , Proteínas tau/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA