Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nucleic Acids Res ; 34(10): 3189-99, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16772403

RESUMEN

While 18 putative RNA helicases are involved in ribosome biogenesis in Saccharomyces cerevisiae, their enzymatic properties have remained largely biochemically uncharacterized. To better understand their function, we examined the enzymatic properties of Dpb8, a DExD/H box protein previously shown to be required for the synthesis of the 18S rRNA. As expected for an RNA helicase, we demonstrate that recombinant Dbp8 has ATPase activity in vitro, and that this activity is dependent on an intact ATPase domain. Strikingly, we identify Esf2, a nucleolar putative RNA binding protein, as a binding partner for Dbp8, and show that it enhances Dbp8 ATPase activity by decreasing the K(M) for ATP. Thus, we have uncovered Esf2 as the first example of a protein co-factor that has a stimulatory effect on a nucleolar RNA helicase. We show that Esf2 can bind to pre-rRNAs and speculate that it may function to bring Dbp8 to the pre-rRNA, thereby both regulating its enzymatic activity and guiding Dbp8 to its site of action.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Nucleares/metabolismo , ARN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , ARN Helicasas DEAD-box , Hidrólisis , Proteínas Nucleares/química , Estructura Terciaria de Proteína , ARN Helicasas/química , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Saccharomyces cerevisiae/química
2.
Protein Eng Des Sel ; 22(7): 431-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19515729

RESUMEN

The half-a-tetratricopeptide (HAT) repeat motif is of interest because it is found exclusively in proteins that are involved in RNA metabolism. Little is known about structure-function relationships in this class of repeat motif. Here, we present the results of a combined bioinformatics, modeling and mutagenesis study of the HAT domain of Utp6. We have derived a new HAT consensus, delineated its structure-defining residues and, by homology modeling, have placed these residues in a structural context. By considering only HAT motifs from Utp6 proteins, we identified residues that are shared by, and unique to, only this subset of HAT motifs, suggesting a key functional role. Employing both random and directed mutagenesis of the HAT domain in yeast Utp6, we have identified residues whose mutation results in loss of function. By examining these residues in the context of the homology model, we have delineated those that act by perturbing structure and those that more likely have a direct effect on function. Importantly, the residues we predict to have a direct effect on function map together on the tertiary structure, thus defining a potential functional interaction surface.


Asunto(s)
Secuencias de Aminoácidos/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Biología Computacional , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína/genética , Alineación de Secuencia
3.
Mol Cell Biol ; 28(21): 6547-56, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18725399

RESUMEN

The small subunit (SSU) processome is a ribosome biogenesis intermediate that assembles from its subcomplexes onto the pre-18S rRNA with yet unknown order and structure. Here, we investigate the architecture of the UtpB subcomplex of the SSU processome, focusing on the interaction between the half-a-tetratricopeptide repeat (HAT) domain of Utp6 and a specific peptide in Utp21. We present a comprehensive map of the interactions within the UtpB subcomplex and further show that the N-terminal domain of Utp6 interacts with Utp18 while the HAT domain interacts with Utp21. Using a panel of point and deletion mutants of Utp6, we show that an intact HAT domain is essential for efficient pre-rRNA processing and cell growth. Further investigation of the Utp6-Utp21 interaction using both genetic and biophysical methods shows that the HAT domain binds a specific peptide ligand in Utp21, the first example of a HAT domain peptide ligand, with a dissociation constant of 10 muM.


Asunto(s)
Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Secuencias Repetitivas de Aminoácido , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Ligandos , Datos de Secuencia Molecular , Mutación/genética , Proteínas Nucleares/química , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química
4.
RNA ; 12(6): 1092-103, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16601205

RESUMEN

Archaeal box C/D sRNAs guide the methylation of specific nucleotides in archaeal ribosomal and tRNAs. Three Methanocaldococcus jannaschii sRNP core proteins (ribosomal protein L7, Nop56/58, and fibrillarin) bind the box C/D sRNAs to assemble the sRNP complex, and these core proteins are essential for nucleotide methylation. A distinguishing feature of the Nop56/58 core protein is the coiled-coil domain, established by alpha-helices 4 and 5, that facilitates Nop56/58 self-dimerization in vitro. The function of this coiled-coil domain has been assessed for box C/D sRNP assembly, sRNP structure, and sRNP-guided nucleotide methylation by mutating or deleting this protein domain. Protein pull-down experiments demonstrated that Nop56/58 self-dimerization and Nop56/58 dimerization with the core protein fibrillarin are mutually exclusive protein:protein interactions. Disruption of Nop56/58 homodimerization by alteration of specific amino acids or deletion of the entire coiled-coil domain had no obvious effect upon core protein binding and sRNP assembly. Site-directed mutation of the Nop56/58 homodimerization domain also had no apparent effect upon either box C/D RNP- or C'/D' RNP-guided nucleotide modification. However, deletion of this domain disrupted guided methylation from both RNP complexes. Nuclease probing of the sRNP assembled with Nop56/58 proteins mutated in the coiled-coil domain indicated that while functional complexes were assembled, box C/D and C'/D' RNPs were altered in structure. Collectively, these experiments revealed that the self-dimerization of the Nop56/58 coiled-coil domain is not required for assembly of a functional sRNP, but the coiled-coil domain is important for the establishment of wild-type box C/D and C'/D' RNP structure essential for nucleotide methylation.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , ARN de Archaea/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Dimerización , Metilación , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Nucleótidos/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Archaea/química , ARN de Archaea/genética , ARN Nucleolar Pequeño/química , Ribonucleoproteínas Nucleares Pequeñas/genética , Alineación de Secuencia
5.
Mol Cell ; 16(6): 943-54, 2004 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-15610737

RESUMEN

Recent studies have revealed multiple dynamic complexes that are precursors to eukaryotic ribosomes. EM visualization of nascent rRNA transcripts provides in vivo temporal and structural context for these events. In exponentially growing S. cerevisiae, pre-18S rRNA is dramatically compacted into a large particle (SSU processome) within seconds of completion of its transcription and is released cotranscriptionally by cleavage in ITS1. After cleavage, a new terminal knob is formed on the nascent large subunit rRNA, compacting it progressively in a 5'-3' direction. Depletion of individual components shows that cotranscriptional SSU processome formation is a sensitive indicator of the occurrence or timing of the early A0-A2 cleavages and depends on factors not isolated in preribosome complexes, as well as on favorable growth conditions. The results show that the approximately 40 components of the SSU processome/90S preribosome can complete their tasks within approximately 85 s in optimal conditions.


Asunto(s)
Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , ARN Ribosómico 18S/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía Electrónica , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA